神经网络主要由输入层,隐藏层以及输出层构成,合理的选择神经网络的层数以及隐藏层神经元的个数,会在很大程度上影响模型的性能(不论是进行分类还是回归任务)。 输入层的节点数量以及输出层的节点数量是最容易获得的。输入层的神经元数量等于数据的特征数量(feature个数)。若为回归,则输出层的神经元数量等于1;若为分类,则输出层的神经元数量为分类的类别个数(如区分猫狗,则为2;区分手写数字0-9
转载
2023-08-17 17:54:07
122阅读
BN层全面解读1. BN层作用概述2. BN层作用方式3. BN作用位置4. BN层起作用的原因5. 测试时的BN层 1. BN层作用概述BN层会使得神经网络对超参数得选择更加稳定,超参数的变化范围可以更大,工作效果也更好。即使是深层网络,BN层的存在也会使得模型训练更加容易。同时BN层具有一定的正则化效果。下面将说明BN层的具体作用方式,并解释BN层起到上述作用效果的原因。2. BN层作用方式
转载
2023-08-17 17:54:11
117阅读
1. 卷积神经网络 (卷积层,激活函数,池化层,全连接层) (1) 把神经网络的隐藏层分为卷积层和池化层(又叫下采样层) 卷积层池化层 : 通过特征后稀疏参数来减少学习的参数,降低网络的复杂度。2. 卷积层:(定义过滤器) (1)大小 (观察窗口)、一般都是奇数(1*1、3*3、5*5) &n
转载
2023-06-17 17:45:25
96阅读
卷积神经网络在几个主流的神经网络开源架构上面都有实现,我这里不是想实现一个自己的架构,主要是通过分析一个最简单的卷积神经网络实现代码,来达到进一步的加深理解卷积神经网络的目的.具体的怎么使用这里就不用说了,这里都有介绍,我只是分析一下这个代码的实现过程并解析代码,梳理一下神经网络是怎么使用的和构造原理.一般的神经网络主要包含几个步骤:准备滤波器。卷积层:使用滤波器对输入图像执行卷积
转载
2023-09-26 10:48:27
114阅读
在深度学习中,我们常常使用神经网络来解决各种问题。然而,并不是所有的问题都可以被神经网络解决。其中一个著名的例子就是异或问题。异或(XOR)是一种逻辑操作符,它表示两个相同则为0,不同则为1。例如,1 XOR 1 = 0,1 XOR 0 = 1,0 XOR 0 = 0,0 XOR 1 = 1。现在考虑以下的异或问题:给定两个输入x和y,我们想要训练一个模型来输出它们的异或结果z=x XOR y。如
转载
2024-01-10 17:22:34
375阅读
1、参考:https://zhuanlan.zhihu.com/p/27642620 2、卷积神经网络的层级结构: • 数据输入层/ Input layer • 卷积计算层/ CONV layer • ReLU激励层 / ReLU layer • 池化层 / Pooling layer • 全连接层 / FC layer2.1 数据输入层该
转载
2023-10-06 22:48:03
0阅读
用算法来预测下表的结果:InputOutput0 0 101 1 111 0 110 1 10上表就相当于是训练数据,Output相当于标签(Label)。import numpy as np
def nonlin(x, deriv=False):
if True == deriv:
return x*(1-x)
return 1 / (1 + np.exp(-x
转载
2023-08-31 21:09:56
91阅读
# 神经网络代码实现教程
## 1. 整体流程
首先,我们来看一下实现神经网络的整体流程。下面是一个简化的流程表格:
| 步骤 | 描述 |
| ---- | ---- |
| 1. 数据准备 | 准备训练数据和测试数据 |
| 2. 网络搭建 | 定义神经网络的结构和层 |
| 3. 模型编译 | 配置模型的损失函数、优化器和评估指标 |
| 4. 模型训练 | 使用训练数据对模型进行训练
原创
2023-12-03 08:07:00
40阅读
简介:一般来说, 神经网络常被用来做无监督学习, 分类, 以及回归. 也就是说, 神经网络可以帮助对未标记数据进行分组, 对数据进行分类, 或者在有监督训练之后输出连续的值. 典型的神经网络在分类方面的应用, 会在网络的最后一层使用逻辑回归分类器(之类)的将连续(continue)的值转换成为离散值如: 0/1, 比如, 给定一个人的身高, 体重, 以及年龄, 你可以给出它有心脏病或者没
转载
2023-09-13 21:09:52
223阅读
01.最常用的激活函数——S函数: 使用这种S函数的一个重要原因是它比其他S形函数计算简单。 02.神经网络为什么把前后层的每一个神经元与所有其他层的神经元互相连接?a.容易实现;b.学习过程会弱化不需要的连接。 03.为什么需要矩阵?a.通过神经网络向前馈送信号所需的运算可以表示为矩阵乘法;b.计算机能高效地进行矩阵运算。 04.神经网络在两件事情上使用了
转载
2024-04-26 11:11:25
59阅读
20206-29神经网络结构神经网络结构大致分为一下几种结构:# 拉直层,把输入特征拉直成为一位数组
tf.keras.layers.Flatten()
# 全连接层
tf.keras.layers.Dense(神经元个数,activation="激活函数",kernel_constraint="正则化方式")
# 卷积层
tf.keras.layers.Conv2D(filters="卷积核
转载
2023-11-24 16:50:23
96阅读
LeNet5简述LeNet-5由深度学习三巨头之一的Yan LeCun提出,他也被称为卷积神经网络之父。LeNet-5是一种用于手写体字符识别的非常高效的卷积神经网络,可以算是卷积神经网络的开山之作了。虽然LeNet-5这个网络非常小,但是它是一个非常完整的卷积神经网络,包含了卷积层、pooling层、全连接层。 LeNet-5网络 上图为LeNet-5的网络结构,除去输入层共有7层,每
转载
2024-01-30 01:30:32
69阅读
并不是所有使用神经网络的尝试都能够成功,这有许多原因。一些问题可以通过改进训练数据、初始权重、设计良好的输出方案来解决。1.改进输入对于S激活函数,可以发现, 如果输入变大, 激活函数就会变得非常平坦。由于我们使用梯度学习新的权重, 因此一个平坦的激活函数会出问题。权重的改变取决于激活函数的梯度。 小梯度意味着限制神经网络学习的能力。 这就是所谓的饱和神经网络。 这意味着, 我们应该尽量保持小的输
转载
2023-12-15 09:58:19
77阅读
一、LeNet-5 简介LeNet-5 是 Yann Lecun 于1998提出的神经网络架构,更是卷积神经网络的开山鼻祖,虽然该网络模型仅有 7 层神经网络结构,但在 MNIST 数据集上的识别精度高达 99.2%,是卷积神经网络首次在数字图像识别领域的成功运用。但是需要说明的有几点:(1)LeNet-5 主要采用 tanh 和 sigmoid 作为非线性激活函数,但是目前 relu
转载
2024-01-10 20:00:24
136阅读
视频录制于2016年12月一、BP神经网络解决异或问题参考人工神经网络理论、设计及应用 50页二、完整的python代码,用BP网络实现解决异或问题 # coding: utf-8
# Github:https://github.com/Qinbf
# 优酷频道:http://i.youku.com/sdxxqbf
# In[5]:
import numpy as np
转载
2023-07-08 14:03:53
66阅读
一、多层前馈神经网络要解决非线性可分问题,需考虑使用多层功能神经元。输入层和输出层之间的一层神经元,被称为隐层或隐含层(hidden layer)。隐含层和输出层神经元都是拥有激活函数的功能神经元。更一般的,常见的神经网络如下图所示的层级结构:图1 多层前馈神经网络结构示意图每层神经元与下一层神经元全互连,神经元之间不存在同层连接,也不存在跨层连接。这样的神经网络结构通常称为“多层前馈神经网络”(
转载
2023-08-07 15:38:57
821阅读
MNIST卷积神经网络代码实现(三)0. 引言前两篇博客总结了感知机和全连接网络实现MNIST手写数字的识别,本篇博客对卷积神经网络的代码实现进行总结。卷积神经网络(CNN)较全连接神经网络而言,其优势在于权值共享和抗形变性,重要的步骤在于卷积和池化两个操作的应用,较全连接神经网络而言,这两种操作能极大的减少网络参数,降低网络的复杂性。 注:以下代码有不清楚的请看博主前面博客,由于相似的太多,故不
转载
2023-08-10 22:01:59
148阅读
在详解卷积神经网络LeNet-5一文中,我详细介绍了一下Lenet-5的基本原理,下面简要介绍一下Lenet-5的pytorch代码实现。建议本文对应上文一起查看。 主要内容一、Lenet-5网络模型实现Step1: 引入必要的包Step2:搭建卷积层C1和池化层S2Step3:搭建卷积层C3和池化层S4Step4:搭建全连接层C5、全连接层F6以及输出层Step5:设置网络前向传播Step6:查
转载
2023-08-11 12:47:27
720阅读
一:构造三层的神经网络(一)初始化参数使用sigmoid激活函数。x为输入数据,大小(5*3),设定y为输出标签,尺寸为5*1三层结构的神经网络,隐藏层只有中间一层,设定第一层为L0,隐藏层(中间层)为L1,输出层为L定义L0输入层的大小为5X3,输入层与隐藏层的连接为权重参数W0,W0的大小为3X4,隐藏层的大小为5X4(因为这里是一个矩阵运算,5行3列的矩阵乘以3行4列的矩阵得到5行4列的矩阵
转载
2024-01-11 15:23:57
175阅读
图1 卷积网络中的 layers承接上三篇博客:卷积层(空洞卷积对比普通卷积)、激活函数层、池化层 & 感受野目录(1)Dropout层(2)BN层(BatchNormal)(3)全连接层(1)Dropout层在深度学习中,当参数过多而训练样本又比较少时,模型容易产生过拟合现象。过拟合是很多深度学习乃至机器学习算法的通病,具体表现为在训练集上预测准确率高,而在测试集上准确率大幅下降。201
转载
2023-07-17 15:47:12
266阅读