转载 2024-04-24 14:59:56
131阅读
ROC曲线与AUCROC曲线下方的面积是AUC,AUC表示对于随机选择的正类别样本确实为正类别,以及随机选择的负类别样本为正类别,分类器更确信前者的概率。 分类问题的模型评估理论参考: Python机器学习库sklearn分类问题的模型评估API参考: import numpy as np import matplotlib.pyplot as plt from itertools impo
# Python KS曲线绘制的科普指南 在统计学中,KS曲线(Kolmogorov-Smirnov曲线)是一种用于比较两个样本分布的工具,常常用于检验某个样本是否服从特定的分布。在机器学习、金融风险管理等领域,KS曲线是评价模型效果的重要指标之一。本文将为大家介绍如何使用Python绘制KS曲线,并通过代码示例来加深对该方法的理解。 ## KS曲线的基础 KS曲线的核心是计算两个累积分布函
原创 2024-08-09 12:29:49
153阅读
# Python中的AUC和KS曲线 在机器学习中,AUC和KS曲线是用来评估模型性能的重要指标。AUC(Area Under Curve)是ROC曲线下的面积,用来衡量二分类模型的分类准确性;而KS(Kolmogorov-Smirnov)曲线则是评估模型的区分能力。 ## AUC曲线 AUC曲线是ROC曲线下的面积,即ROC曲线与横轴之间的面积。AUC的取值范围在0到1之间,数值越接近1表
原创 2024-06-14 04:12:43
156阅读
简介KS曲线是用来衡量分类型模型准确度的工具。KS曲线与ROC曲线非常的类似。其指标的计算方法与混淆矩阵、ROC基本一致。它只是用另一种方式呈现分类模型的准确性。KS值是KS图中两条线之间最大的距离,其能反映出分类器的划分能力。一句话概括版本:KS曲线是两条线,其横轴是阈值,纵轴是TPR与FPR。两条曲线之间之间相距最远的地方对应的阈值,就是最能划分模型的阈值。KS值是MAX(TPR - FPR)
python 画函数曲线示例如下所示:import numpy as np import matplotlib.pyplot as plt x = np.linspace(0, 2 * np.pi, 100) y1, y2 = np.sin(x), np.cos(x) plt.plot(x, y1) plt.plot(x, y2) plt.title('line chart') plt.xlabe
# 机器学习中的KS曲线及其Python实现 在机器学习和统计学中,KS曲线(Kolmogorov-Smirnov Curve)是一种用于评估模型性能的工具,特别是在分类问题中。它帮助我们理解模型对不同类别的区分能力,这对于金融、医疗等领域尤为重要。本文将介绍KS曲线的概念和如何在Python中实现它。 ## 什么是KS曲线KS曲线反映了两个分布之间的差异,常用于评估二分类模型。曲线的纵
原创 2024-10-12 06:57:02
303阅读
# Python KS曲线KS曲线是一种用于评估分类模型性能的曲线,它可以帮助我们确定分类模型在不同阈值下的表现如何。在Python中,我们可以使用一些库来绘制KS曲线。本文将介绍如何使用Python绘制KS曲线,并解释KS曲线的含义及其在评估分类模型中的重要性。 ## 什么是KS曲线KS曲线是一种用于评估二分类模型的性能的曲线,它展示了在不同阈值下模型的真正阳性率(True Pos
原创 2024-03-07 06:23:28
220阅读
K线图分析法简介   K线图这种图表源处于日本,被当时日本米市的商人用来记录米市的行情与价格波动,后因其细腻独到的标画方式而被引入到股市及期货市场。目前,这种图表分析法在我国以至整个东南亚地区均尤为流行。由于用这种方法绘制出来的图表形状颇似一根根蜡烛,加上这些蜡烛有黑白之分,因而也叫阴阳线图表。通过K线图,我们能够把每日或某一周期的市况表现完全记录下来,  股价经过一段时间的盘档后,在图上即形成
转载 2024-07-30 13:40:12
19阅读
python实现KS曲线,相关使用方法请参考上篇博客-R语言实现KS曲线代码如下: ####################### PlotKS ########################## def PlotKS(preds, labels, n, asc): # preds is score: asc=1 # preds is prob: asc=0
1.混淆矩阵(一级指标)以分类模型中最简单的二分类为例,对于这种问题,我们的模型最终需要判断样本的结果是0还是1,或者说是positive还是negative。我们通过样本的采集,能够直接知道真实情况下,哪些数据结果是positive,哪些结果是negative。同时,我们通过用样本数据跑出分类型模型的结果,也可以知道模型认为这些数据哪些是positive,哪些是negative。因此,我们就能得
假设我们开始import numpy as npfrom sklearn import metrics现在我们设置真实的y和预测分数:y = np.array([0, 0, 1, 1])scores = np.array([0.1, 0.4, 0.35, 0.8])(注意,y已经从你的问题向下移了1.这是无关紧要的:无论是预测1,2或0,1都可以获得完全相同的结果(fpr,tpr,阈值等),但是一
1.背景介绍随着数据量的增加,机器学习和深度学习技术已经成为了处理大规模数据的关键技术。预测模型在实际应用中具有重要的地位,但是预测模型的性能是否优化,对于实际应用的效果具有重要的影响。在这篇文章中,我们将讨论如何通过ROC曲线来优化预测模型。ROC(Receiver Operating Characteristic)曲线是一种用于评估二分类分类器的图形表示,它可以帮助我们了解模型在不同阈值下的性
转载 8月前
60阅读
本文代码及数据集来自《Python大数据分析与机器学习商业案例实战》对于二分类模型来说,主流的评估方法有ROC曲线KS曲线两种。一、ROC曲线如果把假警报率理解为代价的话,那么命中率就是收益,所以也可以说在阈值相同的情况下,希望假警报率(代价)尽可能小,命中率(收益)尽可能高,该思想反映在图形上就是ROC曲线尽可能地陡峭。曲线越靠近左上角,说明在相同的阈值条件下,命中率越高,假警报率越低,模型越
转载 2024-02-04 21:47:02
168阅读
1.重要参数kernel 对于这三个参数的取值问题,直接上网格搜索或学习曲线,因为当gamma的符号变化,或者 degree的大小变化时,核函数本身甚至都不是永远单调的。不同核函数在不同数据集上的表现from sklearn.model_selection import train_test_split from sklearn.datasets import load_breast_cancer
并发上传基于py自带模块concurrent.futures import ThreadPoolExecutor#!/usr/bin/env python3 # -*- coding:utf-8 -*- # @Time: 2020/11/22 10:13 # @Author:zhangmingda # @File: ks3_multi_thread_for_concurrent.future
转载 2023-12-28 11:31:51
42阅读
Kolmogorov-Smirnov是比较一个频率分布f(x)与理论分布g(x)或者两个观测值分布的检验方法。其原假设H0:两个数据分布一致或者数据符合理论分布。D=max| f(x)- g(x)|,当实际观测值D>D(n,α)则拒绝H0,否则则接受H0假设。 KS检验与t-检验之类的其他方法不同是KS检验不需要知道数据的分布情况,可以算是一种非参数检验方法。当然这样方便的代价就是当检验的数
转载 2023-09-14 14:51:25
193阅读
已经有10年的历史了,在国外十分盛行。Google搜索引擎的脚本,现在流行的BT(BiteTorrnet),还有著名的应用服务器Zope都是用Python编写的。但在国内的使用还不是很多。她十分有自己的特色。语法简洁,但功能强大,可以跨平台使用,在Linux、Windows和Mac上都有很好支持。她的设计很出色。这里有两个Python的使用例子,都是对磁盘文件的操作,以次来看看Python的特色。
目录混淆矩阵KS曲线与ROC曲线KS曲线ROC曲线KS曲线与ROC曲线之间的关系洛伦兹曲线与Gini系数Lift曲线Gain曲线PSIPython代码参考混淆矩阵KS曲线与ROC曲线KS曲线KS检验:比较频率分布\(f(x)\)与理论分布\(g(x)\)或两个观测值分布的是否一致检验方法,原假设两个数据分布一致或数据符合理论分布,统计量\(D=max|f(x)-g(x)|\)KS值计算步骤:对变量
转载 2023-10-20 23:30:23
366阅读
KS检验及其在机器学习中的应用什么是KS检验Kolmogorov–Smirnov 检验,简称KS检验,是统计学中的一种非参数假设检验,用来检测单样本是否服从某一分布,或者两样本是否服从相同分布。在单样本的情况下,我们想检验这个样本是否服从某一分布函数 ,记 是该样本的经验分布函数。我们构造KS统计量: 如下图,经验分布函数与目标分布的累积分布函数的最大差值就是我们要求
转载 2023-11-13 13:32:30
349阅读
  • 1
  • 2
  • 3
  • 4
  • 5