一、kNN算法分析       K最近邻(k-Nearest Neighbor,KNN)分类算法可以说是最简单的机器学习算法了。它采用测量不同特征值之间的距离方法进行分类。它的思想很简单:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。    &nbs
应用场景  对于简单的数字型验证码的自动识别。前期已经完成的工作是通过切割将验证码图片切割成一个一个的单个数字的图片,并按照对应的数字表征类别进行分类(即哪些图片表示数字7,哪些表示8),将各种数字的图片转换成32×32的二值矩阵,并存放在.txt中,每一种数字表示所对应的.txt的文件名为:“数字类标号_序号.txt”。取一部分这样的.txt作为已知样本集,另一部分作为验证集。使用最邻近算法KN
 # MNIST Digit Prediction with k-Nearest Neighbors #----------------------------------------------- # # This script will load the MNIST data, and split # it into test/train and perform prediction
原创 2023-05-30 17:23:04
82阅读
KNN是机器学习里面的入门基础算法之一,但是它的普适性很强,对于新的问题,把KNN拿出来缝缝补补改改它又能战斗了,所以可以把它当做算法检测标杆KNN思想(人类的比较思维):要判断一个未知的事物,可以找一个我们知道并且与之最相似的事物,我们就认为它俩是同一种事物。那么具体落到计算机上要怎么实现呢?其最主要的就是要模拟找相似的过程,对于输入的一个向量,可以考虑衡量它与已知数据的距离,如果距离值越小,就
    KNN算法是机器学习里面比较简单的一个分类算法了,整体思想比较简单:计算一个点A与其他所有点之间的距离,取出与该点最近的k个点,然后统计这k个点里面所属分类比例最大的,则点A属于该分类。    这次我就打算用knn来实现物品的推荐,还记得前面写的用协同过滤来做商品推荐吗?是不是和knn的实现有点一样呢,都是计算每个实体的与其他实体
文章目录一、KNN算法1、算法简介2、基本思想3、应用领域4、算法流程5、欧式距离6、采用并行计算的原因二、MNIST数据集1、基本介绍2、下载方式py input_data模块手动下载二、C语言代码实现存储数据集元素的定义数据集读入(分为图像数据集、标签数据集)欧式距离计算比较函数程序最终实现三、CUDA代码实现 一、KNN算法1、算法简介KNN算法(K-Nearest Neighbor al
 KNN是通过测量不同特征值之间的距离进行分类。它的的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。K通常是不大于20的整数。KNN算法中,所选择的邻居都是已经正确分类的对象。该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。下面通过一个简单的例子说明一下:如下图,绿色圆要被决定赋予
华为机器学习(ML Kit)提供手部关键点识别服务,可用于手语识别。手部关键点识别服务能识别手部21个关键点,通过每个手指的方向和手语规则作比较去找手语字母表。应用场景手语通常被听力和口语有障碍的人来使用,是收集手势包含日常互动中所使用的动作和手势。使用ML Kit 可以建立一个智能手语字母表识别器,它可以像一个辅助器一样将手势翻译成单词或者句子,也可以将单词或者句子翻译成手势。这里尝试的是手势当
一、引言我目前是大二年级上学期,临近期末居然开了一门人工智能导论,最后要求使用百度EasyDL进行图像的分类识别,至于分类的内容嘛,哈哈哈,自己选择,课上脑子里各种分类的想法,最后由于懒惰,还是选择进行数字0-9的识别分类,当然还有更懒惰的,用python生成数据集和测试集,下面来看看流程吧~二、生成数据今天借鉴了一个大佬写的一个生成手写体图片的 Python 程序,可以批量生成手写体数字数据集,
作者 | 奶糖猫算法简介手写数字识别KNN算法一个特别经典的实例,其数据源获取方式有两种,一种是来自MNIST数据集,另一种是从UCI欧文大学机器学习存储库中下载,本文基于后者讲解该例。基本思想就是利用KNN算法推断出如下图一个32x32的二进制矩阵代表的数字是处于0-9之间哪一个数字。数据集包括两部分,一部分是训练数据集,共有1934个数据;另一部分是测试数据集,共有946个数据。所
流程如下:(1)收集数据:提供文本文件。(2)准备数据:编写函数img2vector(),将图像格式转换为分类器使用的向量格式。(3)分析数据:在Python命令提示符中检擦数据,确保它符合要求。(4)训练算法:此步骤不适用于k-近邻算法。(5)测试算法:编写函数使用提供的部分数据集作为测试样本,测试样本与非测试样本的区别在于测试样本是已经完成分类的数据,如果预测分类与实际类别不同,则标记为一个错
第七章 贝叶斯分类器学习 1. 解释先验概率、后验概率、全概率公式、条件概率公式,结合实例说明贝叶斯公式,如何理解贝叶斯定理?   例子:假设有一个容器,里面装满了可能有偏见的硬币     1)硬币类型1是公平的,50%正面/ 50%反面浴缸里40%的硬币是1型的。     2) 硬币类型2产生70%的正面。35%的硬币是2型硬币     3)型硬币产生20%的正面。25%的硬币
一、前期工作1. 检查是否有可用的gpuimport tensorflow as tf print("Num of GPUs available: ", len(tf.test.gpu_device_name()))2. 导入数据# 导入数据 import tensorflow as tf from tensorflow.python.keras import datasets, layers,
 从这篇文章开始,终于要干点正儿八经的工作了,前面都是准备工作。这次我们要解决机器学习的经典问题,MNIST手写数字识别。首先介绍一下数据集。请首先解压:TF_Net\Asset\mnist_png.tar.gz文件 文件夹内包括两个文件夹:training和validation,其中training文件夹下包括60000个训练图片validation下包括10000个评估图片
【图像处理】-035 knn分类算法实现数字识别,选择与之最近的K个样本中最近的样本类别或者最多的类别作为待分类样本的类别。文章目录【图像处理】-035 knn分类算法实现数字识别1 概述2 印刷体数字识别问题3 KNN印刷数字分类3.1 训练样本的制作3.2 分类器模型的建立3.3 进行分类1 概述  KNN分类算法没有传统意义上的训练过程,其训练过程只是简单的将训练样本和标签保存起来,用于分类
Finding Tiny Faces in the Wild with Generative Adversarial Network,CVPR 2018,Oral论文 三个主要贡献:新颖的端到端方式的人脸检测CNN网络结构,提出了super-resolution network(SRN)和 refinement network (RN)生成真实并且高分辨率的图像;引入新的loss去同时判断真/
MNIST数据集训练,输入要识别的图片路径,首先预处理,将图片调成 28*28 ,转成灰度图,反色,取阈值二值化,变成 1*784 数组,输入模型,算出被预测数字。程序如下:pre_pic.pyfrom PIL import Image import numpy as np import tensorflow as tf def pre_pic(path): im = Image.op
转载 2024-04-18 16:21:44
35阅读
文字检测是文字识别过程中的一个非常重要的环节,文字检测的主要目标是将图片中的文字区域位置检测出来,以便于进行后面的文字识别,只有找到了文本所在区域,才能对其内容进行识别。文字检测的场景主要分为两种,一种是简单场景,另一种是复杂场景。其中,简单场景的文字检测较为简单,例如像书本扫描、屏幕截图、或者清晰度高、规整的照片等;而复杂场景,主要是指自然场景,情况比较复杂,例如像街边的广告牌、产品包装盒、设备
转载 2024-05-21 17:10:37
55阅读
实现mnist手写数字识别
原创 精选 2024-04-01 14:10:36
190阅读
Keras是一款特别友好的基于Python的深度学习库,甚至比Tensorflow还友好。关于Keras的介绍和配置,可以看我之前的文章Keras的介绍与配置,也可以直接查看官网中文文档接下来我们要做被誉为机器学习届的Hello World的手写数字识别。真的掌握了这个,就已经把Keras掌握得七七八八了。剩下的就是算法方面的问题了。我们知道,机器学习的工作,比起别的编程工作,有两个特别大的痛点。
转载 2024-04-01 13:42:36
47阅读
  • 1
  • 2
  • 3
  • 4
  • 5