K-means聚类算法K-means聚类算法也称k均值聚类算法,时集简单和经典于一身的基于距离的聚类算法。它采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。该算法认为类族是由距离靠近的对象组成的,取中心点作为质心,把靠近质心的归为一类。K-means核心思想K-means聚类算法是一种迭代求解的过程,是一种自学习算法,其步骤是先设定质心的个数,随机找质心位置,把每个点离各个
转载
2024-04-01 19:50:36
52阅读
因为笔者最近在处理数据的时候需要用到分类算法,为了理解的更加透彻,在这里对几种基本的分类算法进行了小结,以下所有的工作都是在已有的基础上加入了自己的一些理解K均值聚类算法在看下面之前建议看大佬写的Kmeans聚类算法详解,个人觉得写的很详细,也比较容易理解,以下的都是在此基础上的一些个人感悟。k均值聚类算法(k-means clustering algorithm)是一种迭代求解的聚类分析算法,其
转载
2024-03-28 08:36:38
61阅读
k-均值聚类算法一.聚类分析概述1.簇的定义2.常用的聚类算法二.K-均值聚类算法1.k-均值算法的python实现1.1 导入数据集1.2 构建距离计算函数1.3 编写自动生成rand质心的函数1.4 K-means聚类函数的实现 一.聚类分析概述聚类分析是无监督类机器学习算法中常用的一类,其目的是将数据划分成有意义或有用的组(也被称为簇)。组 内的对象相互之间是相似的(相关的),而不同组中的
转载
2024-03-18 19:36:03
78阅读
1、前面一篇文章算法——K均值聚类算法(Java实现)简单的实现了一下K均值分类算法,这节我们对于他的应用进行一个扩展应用2、目标为对对象的分类3、具体实现如下1)首先建立一个基类KmeansObject,目的为继承该类的子类都可以应用我们的k均值算法进行分类,代码如下package org.cyxl.util.algorithm;
/**
* 所有使用k均值分类算法的对象都必须继承自该对象
转载
2024-06-24 13:11:04
0阅读
K-Means聚类算法目的:将数据分为K组基本思路随机选取K个对象作为初始的聚类中心计算每个对象与各个聚类中心之间的距离,将每个对象分配给距离它最近的聚类中心将属于同一类的对象求均值,将这个均值作为该类的新的聚类中心重复2,3步,直到求出的聚类中心满足某个条件(收敛、没有对象被重新分配)初始聚类中心的选择会对最终求出的分类结果有一定的影响,所以初始点的选取尽量离散,间隔大K-Means算法对大数据
转载
2023-05-31 23:02:50
128阅读
1、聚类是一种无监督学习,他讲相似的对象放到同一簇下,有点像自动分类。聚类方法几乎可以用到任何对象上,簇内的对象越相似,聚类结果就越好。2、K均值聚类的优点 算法简单容易实现 缺点: 可能收敛到局部最小值,在大规模数据上收敛速度较慢3、K-均值算法算法流程以及伪代码 首先随机选择k个初始点作为质心。然后将数据集中的每个点分配到一个簇中,具体来说,遍历数据集计算数据与质心之间的距离找到最小的
转载
2023-06-07 16:48:54
182阅读
一、K-means算法原理 k-means算法是一种简单的迭代型聚类算法,采用距离作为相似性指标,从而发现给定数据集中的K个类,且每个类的中心是根据类中所有值的均值得到,每个类用聚类中心来描述。对于给定的一个包含n个d维数据点的数据集X以及要分得的类别K,选取欧式距离作为相似度指标,聚类目标是使得各类的聚类平方和最小,即最小化: &nbs
转载
2023-06-13 21:07:32
118阅读
k-均值聚类算法Kmeans算法是最常用的聚类算法,主要思想是:在给定K值和K个初始类簇中心点的情况下,把每个点(亦即数据记录)分到离其最近的类簇中心点所代表的类簇中,所有点分配完毕之后,根据一个类簇内的所有点重新计算该类簇的中心点(取平均值),然后再迭代的进行分配点和更新类簇中心点的步骤,直至类簇中心点的变化很小,或者达到指定的迭代次数。K-Means算法如何工作?输入:样本集D,簇的数目k,最
转载
2023-08-24 15:06:13
100阅读
本文主要讲解的聚类算法有:k均值算法、均值漂移算法、凝聚层次算法、DBSCAN密度聚类算法,还介绍了聚类算法性能指标——轮廓系数。 聚类(cluster)与分类(class)不同,分类是有监督学习模型,聚类属于无监督学习模型。聚类讲究使用一些算法把样本划分为n个群落。一般情况下,这种算法都需要计算欧几里得距离。 $$P(x_1) - Q(x_2): |x_1-x_2| = \sqrt{(x_1
转载
2024-02-29 21:56:34
309阅读
文章目录1.引言2.`K-means`算法原理3.`K-means`算法实现3.1 `numpy`实现`K-means`算法3.2 使用`scikit-learn`实现`K-means`算法4 .`K-means`优缺点 1.引言 K-means算法是一种聚类算法,所谓聚类,即根据相似性原则,将具有较高相似度的数据对象划分至同一类簇,将具有较
转载
2024-05-29 00:05:19
96阅读
1、聚类是一种无监督学习,他讲相似的对象放到同一簇下,有点像自动分类。聚类方法几乎可以用到任何对象上,簇内的对象越相似,聚类结果就越好。2、K均值聚类的优点 算法简单容易实现 缺点: 可能收敛到局部最小值,在大规模数据上收敛速度较慢3、K-均值算法算法流程以及伪代码 首先随机选择k个初始点作为质心。然后将数据集中的每个点分配到一个簇中,具体来说,遍历数据集计算数据与质心之间的距离找到最小的
转载
2024-09-21 07:13:33
148阅读
k均值聚类(K-Means Clustering)算法由J.MacQueen(1967)和J.A.Hartigan还有M.A.Wong三人在1975左右提出的。简单的说,k-means聚类算法就是根据你的数据对象的属性特征将你的数据对象进行分类或者分组。再简单点儿说,k-mean聚类就是将你的数据分类用的。K-均值是一个迭代算法,假设我们想要将数据聚类成 n 个组,其方法为: 首先选择
转载
2024-04-29 22:45:11
33阅读
1、概述本篇博文为数据挖掘算法系列的第一篇。现在对于Kmeans算法进行简单的介绍,Kmeans算法是属于无监督的学习的算法,并且是最基本、最简单的一种基于距离的聚类算法。下面简单说一下Kmeans算法的步骤:选随机选取K的簇中心(注意这个K是自己选择的)计算每个数据点离这K个簇中心的距离,然后将这个点划分到距离最小的簇中重新计算簇中心,即将每个簇的所有数据点相加求均值,将这个均值作为对应簇的新簇
转载
2023-08-01 21:46:07
109阅读
在数据挖掘中,聚类是一个很重要的概念。传统的聚类分析计算方法主要有如下几种:划分方法、层次方法、基于密度的方法、基于网格的方法、基于模型的方法等。其中K-Means算法是划分方法中的一个经典的算法。
转载
2021-07-07 14:35:35
10000+阅读
根据训练样本是否包含标签信息,机器学习可以分为监督学习和无监督学习(这里我们不考虑半监督学习)。聚类算法是典型的无监督学习算法,它是对事务自动归类的一种算法,在聚类算法中利用样本的标签,将具有相似属性的事物聚集到一类中。 一、常用的相似性度量 K-Means算法(K-均值算法)是基
转载
2023-09-25 13:01:29
114阅读
决策树、随机森林、逻辑回归都属于“有监督学习”。
聚类属于“无监督学习”,其作用就是将数据划分成有意义或有用的簇。
聚类的应用:
对客户信息进行分类,以实现精准营销。
可以用于降维和矢量量化(vector quantization)常常用于图像、声音、视频等非结构化数据的压缩。
聚类和分类的区别: 分类是训练数据有标签,新来一个数据判断属于哪
转载
2024-04-05 00:03:30
20阅读
今天来写写数学建模中的聚类模型,还是分为几个版块来写1.聚类模型简介俗话说:“物以类聚,人以群分”,所谓的聚类,就是将样本划分为由类似的对象组成的多个类的过程。聚类之后,我们可以更加准确地在每个类中单独使用统计模型进行估计,分析或者预测;也可以研究不同类之间的差异。聚类算法常见的有K-means聚类算法,系统聚类算法,DBSCAN算法2.K-means聚类算法a.算法流程:指定需要划分的簇的个数,
转载
2024-05-08 23:33:24
89阅读
大家好久不见!之前给大家介绍了分类和聚类的区别、聚类的进一步介绍以及K-means聚类算法,大家看懂了吗? 本期,我们将带领大家动手实践,向大家讲解之前介绍的“K-means”算法如何通过编程实现。4.1 Python的编程实现 如果您有过Python的编程经验,那么可以动手试试下面的编程实践!01、代码:数据获取#Python
import ma
转载
2024-07-30 20:55:52
31阅读
聚类算法代码
转载
2022-11-21 21:58:57
205阅读
文章目录聚类算法1.聚类算法的概念2.聚类算法实现流程3.模型评估3.1 误差平⽅和(SSE \The sum of squares due to error)3.2 “肘”⽅法 (Elbow method) — K值确定3.3 轮廓系数法(Silhouette Coefficient)3.4 CH系数(Calinski-Harabasz Index)4.k-means算法⼩结5. 特征降维5.
转载
2023-08-06 12:36:16
156阅读