在前3篇博客介绍完pytorch的基础知识之后,我这里我们接着介绍简单网络的搭建,详述卷积操作,最后根据卷积操作搭建 神经网络的卷积层。1. nn.Module的简单使用 官方帮助文档 首先,我们还是要从帮助文档看起,进入 pytorch 官网,查看 Pytorch 的官方帮助文档
转载
2023-12-10 12:05:04
89阅读
前两个笔记笔者集中探讨了卷积神经网络中的卷积原理,对于二维卷积和三维卷积的原理进行了深入的剖析,对 CNN 的卷积、池化、全连接、滤波器、感受野等关键概念进行了充分的理解。本节内容将继续秉承之前 DNN 的学习路线,在利用 Tensorflow 搭建神经网络之前,先尝试利用 numpy 手动搭建卷积神经网络,以期对卷积神经网络的卷积机制
转载
2023-11-04 18:55:43
0阅读
目录1. 背景知识1.1 CNN(卷积神经网络)结构介绍1.2 卷积层1.3 Pooling池化层1.4 经过一次卷积与池化的结果1.5 Flatten1.6 注意Filter的维度1.7 补充:1x1卷积1.8 CNN学到了什么2. 作业描述3. 数据预处理4. 在train set 上训练,参考val set上的结果调参5. 在总的训练集上训练 1. 背景知识1.1 CNN(卷积神经网络)结
转载
2023-11-26 10:06:25
97阅读
目录 前言:一、加载数据集二、定义模型架构三、数据预处理四、预处理类标签五、定义回调函数六、编译模型七、训练集拟合模型八、加载保存好的模型九、测试集评估模型前言:前面介绍了卷积神经网络cnn每类层的搭建方式,接下来将介绍如何完善整个训练模型,分为哪几步,让我们一起看看吧!以现阶段学习手势识别模型框架搭建为例:一、加载数据集 从网上下载数据集,数据格式为(12000,20,20,
转载
2023-10-13 00:01:02
99阅读
6.4 用卷积神经网络处理序列1.实现一维卷积神经网络,用imdb情感分类任务举例from keras.datasets import imdb
from keras.preprocessing import sequence
max_features = 10000
max_len = 500
print('loading dataset ......')
(x_train,y_train)
转载
2023-08-12 19:59:34
129阅读
这份代码是笔者为了巩固神经网络当中反向传播而写的,同时也巩固了一些对于细节的理解,当然由于笔者水平有限,搭建的仅仅是序列模型,而且有些地方没想清楚就开始写了,导致有点冗长,甚至有些地方还有一些bug或者错误,仅用于学习,代码放在https://github.com/Spock343/deeplearning_stepbystep由于模型不怎么样,则仅用于做简单的分类(自己生成数据集)在这个模型中,
转载
2023-12-07 22:29:27
43阅读
卷积神经网络(Convolutional Neural Network, CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。与普通神经网络非常相似,它们都由具有可学习的权重和偏置常量(biases)的神经元组成。每个神经元都接收一些输入,并做一些点积计算,输出是每个分类的分数,普通神经网络里的一些计算技巧到这里依旧适用。卷积神经网络通常包含以
转载
2023-11-11 21:04:48
62阅读
keras构建卷积神经网络 This article is aimed at people who want to learn or review how to build a basic Convolutional Neural Network in Keras. The dataset in which this article is based on is the Fashion-Mnis
转载
2023-11-09 08:16:23
91阅读
1、卷积神经网络简介卷积神经网络(Convolutional Neural Network, CNN)作为一个深度学习架构被提出的最初诉求,是降低对图像数据预处理的要求,以及避免复杂的特征工程。CNN不需要将特征提取和分类训练分开,它在训练的时候就自动提取了最有效的特征。 CNN最大的特点是卷积的权值共享结构,可以大幅度减少神经网络的参数量,防止过拟合的同时又降低了神经网络模型的复杂度。一个卷积神
转载
2023-11-27 21:33:48
64阅读
本文内容来自名为convolutional networks for images, speech, and time-series的论文 作者:Yann LeCun, Yoshua Bengio由于BP网络在复杂、高维、非线性上强大的学习分类能力,被广泛应用于图像识别、语言识别等领域。在、在传统有模式识别的模型中,通常是先用一个人工设计的特征提取器从输入中提取相
转载
2024-05-10 08:43:48
32阅读
视频中所涉及的代码如下:basic_cnn.py 一个简单的卷积层padding.py 卷积层参数——padding填充stride.py 参数——步长maxpooling.py 下采样——最大池化cnn.py 一个简单的卷积神经网络cnn_job.py 作业——修改网络结构1. basic_cnn.py 一个简单的卷积层 示范卷积层所做的工作import torch
in_channels, o
转载
2023-09-21 11:35:20
186阅读
学了一段深度学习,最近学了tensorflow,所以想自己去根据教程写一个简单的卷积神经网络。CNN:卷积神经网络的实现一个卷积神经网络的结构一般是由输入-->卷积-->池化-->卷积-->池化-->............-->全连接-->全连接-->输出,这样的一层层构建起来的网络。本代码构建了一个含有两个卷积层,两个池化层和两个全连接层的网络,
转载
2023-11-27 09:45:07
87阅读
1.卷积与神经元 1.1 什么是卷积? 简单来说,卷积(或内积)就是一种先把对应位置相乘然后再把结果相加的运算。(具体含义或者数学公式可以查阅相关资料) 如下图就表示卷积的运算过程:&nbs
转载
2024-04-09 19:31:43
78阅读
卷积神经网络一、图片的识别过程:二、卷积神经网络解决了两个问题三、基本结构1.卷积层2.池化层3.ReLU 激活层单层卷积神经网络4.全连接层四、卷积神经网络流程五、卷积神经网络算法过程六、(代码)卷积神经网络---手写数字模型 一、图片的识别过程:1.特征提取-CNN自动提取(卷积层) 2.提取主要特征(池化层) 3.特征汇总 4.产生分类器进行预测识别(全连层)1.传统神经网络处理图片-全连
转载
2023-06-25 09:53:42
352阅读
# TensorFlow搭建卷积神经网络
## 引言
卷积神经网络(Convolutional Neural Network, CNN)是一种在计算机视觉和图像识别领域中广泛应用的深度学习模型。它的特点是能够自动从图像中提取特征,并进行高效的分类和识别。TensorFlow是一个开源的深度学习框架,它提供了丰富的API和工具,方便我们构建和训练卷积神经网络。
本文将介绍如何使用TensorF
原创
2023-10-13 08:05:39
79阅读
文章目录一、数据的读取1. Dataset 类2. DataLoader 类二、Pytorch搭建神经网络的流程三、卷积层3.1. 一维卷积层:torch.nn.Conv1d()3.2. 二维卷积层:torch.nn.Conv2d()3.3. 三维卷积层:torch.nn.Conv3d()四、池化层4.1. 1维最大池化:torch.nn.MaxPool1d()4.2. 2维最大池化:torch
转载
2024-04-15 12:32:31
200阅读
识别黑白图中的服装图案(Fashion-MNIST)基于上述代码修改模型的组成1 修改myConNet模型1.1.1 修改阐述将模型中的两个全连接层,变为全局平均池化层。1.1.2 修改结果### 1.5 定义模型类
class myConNet(torch.nn.Module):
def __init__(self):
super(myConNet, self
转载
2023-11-27 10:18:21
54阅读
在上一篇博文中我们着重分析了partial_connected_layer类的成员变量的结构,在这篇博文中我们将继续对partial_connected_layer类中的其他成员函数做一下简要介绍。 一、构造函数 由于partial_connected_layer类是继承自基类layer,因此在构造函数中同样分为两部分,即调用基类构造函数以及初始化自身成员变量: partial_conne
转载
2023-11-26 12:57:14
97阅读
卷积网络中的输入和输出层与传统神经网络有些区别,需重新设计,训练模块基本一致import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torchvision import datasets,transforms
import matplotlib.pypl
转载
2023-12-02 15:56:22
79阅读
卷积神经网络 CNN 文章目录卷积神经网络 CNN一、概述二、卷积的概念三、CNN原理3.1 卷积层3.2 池化层3.3 完全连接层3.4 权值矩阵BP算法3.5 层的尺寸设置四、CNN简单使用五、总结 一、概述 卷积神经网络(Convolutional Neural Network, CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。
转载
2023-07-10 16:09:28
1432阅读