声明:1. 我和每一个应该看这篇博文的人一样,都是初学者,都是小菜鸟,我发布博文只是希望加深学习印象并与大家讨论。2. 我不确定的地方用了“应该”二字首先,通俗说一下,CNN的存在是为了解决两个主要问题:1. 权值太多。这个随便一篇博文都能解释2. 语义理解。全连接网络结构处理每一个像素时,其相邻像素与距离很远的像素无差别对待,并没有考虑图像内容的空间结构。换句话说,打乱图像像素的输入顺序,结果不
转载 2024-08-08 10:38:20
105阅读
论文提出了一种基于卷积和VIT的混合网络,利用Transformers捕获远程依赖关系,利用cnn提取局部信息。构建了一系列模型cmt,
接着,SW-MSA可以让你通过滑动窗口的方式,将不同窗口中的内容进行比较和交互。这样,就能够捕捉到故事中的重要事件和关键人物,不
1、LeNet-5模型简介LeNet-5 模型是 Yann LeCun 教授于 1998 年在论文 Gradient-based learning applied to document         recognitionr [1] 中提出的,它是第一个成功应用于数字识别问题的卷积神经网络。在 MNIST 数据集上, LeN
卷积神经网络好久没写东西了,惭愧。。。。 声明:此文只是作者作为搬运工从别的博客进行复制,以变自己留做学习。如有错误恳请纠正在切入卷积神经网络之前我们首先得明白这几个东西:卷积,bp神经网络,池化,卷积神经网络结构。以及最后的代码实现,和作者网上抄的几个例子。卷积看似比较奥秘的东西,其实就是图像矩阵与卷积核对应值相乘,然后再将其值进行求和。 3 * 3 的像素区域R与卷积核G的卷积运算:R5(
著名: 本文是从 Michael Nielsen的电子书Neural Network and Deep Learning的深度学习那一章的卷积神经网络的参数优化方法的一些总结和摘录,并不是我自己的结论和做实验所得到的结果。我想Michael的实验结果更有说服力一些。本书在github上有中文翻译的版本,前言最近卷积神经网络(CNN)很火热,它在图像分类领域的卓越表现引起了大家的广泛关注。本文总结和
''' Created on 2017年4月22日 @author: weizhen ''' import tensorflow as tf #通过tf.get_variable的方式创建过滤器的权重变量和偏置变量,上面介绍了卷积层 #的参数个数只和过滤器的尺寸、深度以及当前层节点矩阵的深度有关,所以这里声明的参数变量 #是一个四维矩阵,前面两个维度代表了过滤器的尺寸,第三个维度表示了当前层的深
目标定义目标需求1:要基于卷积神经网络CNN来识别哪些细胞已经感染、哪些细胞还未感染 目标需求2:可视化模型随着迭代次数的训练集与测试集损失值的变化情况 目标需求3:可视化模型随着迭代次数的训练集与测试集准确率的变化情况数据集介绍本数据集用于检测疟疾的细胞图像,细胞图像分为两类: 一类是感染的细胞,另一类是未感染的细胞 数据集来源于:https://ceb.nlm.nih.gov/re
本文内容来自《Tensorflow深度学习算法原理与编程实战》第七章卷积不再详细介绍卷积运算的数学原理。在实际运用中,卷积运算的形式为: 其中,I为输入二位网络数据,K为卷积核。概念:感受野在处理图像这样的高维度输入时,让每个神经元都与前一层中的所有神经元进行全连接是不现实的。相反,我们让每个神经元只与输入数据的一个局部区域连接。该连接的空间大小叫做神经元的感受野(receptive field)
一、卷积层1、什么是卷积卷积的基本原理每张图像对应一个特征矩阵,卷积核3*3也是一个矩阵。(卷积核:奇数方阵)图像矩阵中按顺序(从左到右、从上到下)获得3*3的小矩阵,与卷积核(权值矩阵,过滤器)的对应元素分别相乘,得到9个数,相加,得到一个数。重复以上步骤,直到图像矩阵的全部元素遍历完。得到的数,按顺序构成新矩阵。          &nbsp
看了很多反卷积和转置卷积的文章,似乎还是一头雾水,记录下自己理解的过程~有人一句话总结:逆卷积相对于卷积在神经网络结构的正向和反向传播中做相反的运算。其实还是不是很理解。反卷积(转置卷积)通常用来两个方面:1. CNN可视化,通过反卷积卷积得到的feature map还原到像素空间,来观察feature map对哪些pattern相应最大,即可视化哪些特征是卷积操作提取出来的;2. FCN全卷
转载 2024-04-26 15:29:38
87阅读
卷积(多 >1 的映射) 本质:在对输入做9 >1的映射关系时,保持了输出相对于input中的位置性关系 对核矩阵做以下变形:卷积核的滑动步骤变成了卷积核矩阵的扩增 卷积的矩阵乘法变成以下形式:核矩阵重排,输入featuremap变形为向量 反卷积(1 >多 的映射) deconvlution/tr
转载 2020-07-28 19:04:00
1490阅读
2评论
前言卷积和反卷积在CNN中经常被用到,想要彻底搞懂并不是那么容易。本文主要分三个部分来讲解卷积和反卷积,分别包括概念、工作过程、代码示例,其中代码实践部分主结合TensorFlow框架来进行实践。给大家介绍一个卷积过程的可视化工具,这个项目是github上面的一个开源项目。卷积和反卷积卷积(Convolutional):卷积在图像处理领域被广泛的应用,像滤波、边缘检测、图片锐化等,都是通过不同的卷
转载 2024-04-15 13:35:20
326阅读
卷积 deconvolution在应用在计算机视觉的深度学习领域,由于输入图像通过卷积神经网络(CNN)提取特征后,输出的尺寸往往会变小,而有时我们需要将图像恢复到原来的尺寸以便进行进一步的计算(e.g.图像的语义分割),这个采用扩大图像尺寸,实现图像由小分辨率到大分辨率的映射的操作,叫做上采样(Upsample)。上采样有3种常见的方法:双线性插值(bilinear),反卷积(Transpos
1,标准卷积 标准卷积过程如上。 对于多通道的卷积:举个例子,假设有一个3×3大小的卷积层,其输入通道为16、输出通道为32。那么一般的操作就是用32个3×3的卷积核来分别同输入数据卷积,这样每个卷积核需要3×3×16个参数,得到的输出是只有一个通道的数据。之所以会得到一通道的数据,是因为刚开始3×3×16的卷积核的每个通道会在输入数据的每个对应通道上做卷积,然后叠加每一个通道对应位置的值,使之变
转载 2024-03-19 21:20:30
99阅读
  作者:ChaucerGInvolution: Inverting the Inherence of Convolution for Visual Recognition代码:https://github.com/d-li14/involution论文:https://arxiv.org/abs/2103.06255本文提出了Involution卷积,可构建用于构建新型的神经网络架构!
卷积运算与相关运算在计算机视觉领域,卷积核、滤波器通常为较小尺寸的矩阵,比如\(3\times3\)、\(5\times5\)等,数字图像是相对较大尺寸的2维(多维)矩阵(张量),图像卷积运算与相关运算的关系如下图所示(图片来自链接),其中\(F\)为滤波器,\(X\)为图像,\(O\)为结果。相关是将滤波器在图像上滑动,对应位置相乘求和;卷积则先将滤波器旋转180度(行列均对称翻转),然后使用旋
文章目录前言一、膨胀卷积二、gridding effect三、使用多个膨胀卷积的时候,怎样设置膨胀系数?四、膨胀系数设置建议五、是否应用HDC设计准则的分割效果对比六、总结参考资料 前言这篇博文主要来介绍一下膨胀卷积的知识,膨胀卷积(Dilated convolution)也叫做空洞卷积(Atrous convolution)。我第一次接触到这个词实在看deeplabv3+的论文的时候碰见的这个
文章目录1.Bn层详解2.卷积神经网络相关激活函数过拟合 1.Bn层详解 1)BN层在网络中的作用 BN层是一种批规范化操作,公式为减均值除标准差,然后乘γ加β。将输入分布归一化到0,1分布,使得激活函数更好的作用,因此解决了梯度消失的问题。同时由于数据被归一化,使得网络可以有更好的收敛速度。但是似乎没有证据表明它可以解决高层的网络输入分布变化剧烈的问题(Internal Covariate S
膨胀卷积,也叫空洞卷积,Dilated Convolution,也有叫 扩张卷积;空洞卷积 是 2016在ICLR(International Conference on Learning Representation)上被提出的,本身用在图像分割领域,被deepmind拿来应用到语音(WaveNet)和NLP领域,它在物体检测也发挥了重要的作用,对于小物体的检测十分重要 普通卷积&nb
转载 2024-01-03 17:10:58
139阅读
  • 1
  • 2
  • 3
  • 4
  • 5