Tensorflow作为符号编程框架,需要先构建数据流图,再读取数据,随后进行模型训练。tensorflow官网给出了以下三种方法来加载数据。 – 预加载数据:在tensorflow图中定义常量或变量来保存所有数据。 – 填充数据:python产生数据,再把数据填充后端。 – 从文件中读取数据:从文件中直接读取,让队列管理器从文件中读取数据。一、预加载数据x1 = tf.constant([[2,
转载
2024-03-21 11:02:56
123阅读
记录一下跑程序遇到的问题,也算是自己的总结问题1:
AttributeError: module ‘tensorflow’ has no attribute ‘variable’
解决办法:
方法一:官网搜索全局变量函数
https://www.tensorflow.org/api_docs/python
方法二:直接修改
将tf.placeholder改成tf.compat.v1.placeho
TensorFlow(或者说深度学习领域)中常见的且自带的数据集有:MNIST:手写数字识别,手写数字数据集。被称为深度学习的“hello world”。CIFAR10/100:小型图片数据集。IMDB:电影评论数据集。BOSTON HONSING:波士顿房价预测。(这个不介绍,因为我没玩过但是也很常见)import tensorflow as tfMNIST:加载MNIST数据集:(train_
转载
2024-02-28 09:37:57
39阅读
最近在做一些工程部署和传统算法的工作,遇到写坑,写些解决办法记录一下:很多时候我们会面临在一台机器上进行编译和打包,在另外一台机器或者集群上进行部署,而机器与机器之间的gpu设备是不同型号的情况,这个时候做深度学习推理的时候会出现初始化加载很慢的情况,或者有二次加载的情况,这篇小博文就是讲如何解决的.由于CUDA的JIT Compile(即时编译)机制,是为了应对未来没发布的gpu硬件时也能顺滑的
转载
2024-03-17 13:14:08
56阅读
背景之前已经写过TensorFlow图与模型的加载与存储了,写的很详细,但是或闻有人没看懂,所以在附上一个关于模型加载与存储的例子,CODE是我偶然看到了,就记下来了.其中模型很巧妙,比之前numpy写一大堆简单多了,这样有利于把主要注意力放在模型的加载与存储上.解析创建保存文件的类:saver = tf.train.Saver()saver = tf.train.Saver() ,即为常见保存模
转载
2024-07-28 16:27:25
50阅读
最近在看TF2.0的内容,顺便把以前的内容也做下笔记,以便查阅。所有程序在不注明的情况下,默认使用tensorflow1.14版本。数据加载是训练模型的第一步,合理的数据加载方式虽然不会对模型效果有促进作用,但是会大大加快训练过程。TensorFlow中常用的数据加载方式有四种:内存对象数据集,在学习阶段最常见的数据加载方式,在session中直接用字典变量feed_dict给变量喂数据,这种方式
转载
2024-02-22 16:00:48
9阅读
git链接参考链接训练模型#!/usr/bin/env python3# -*- coding: utf-8 -*-"""Created on Sat Mar 16 22:26:43 2019@author: lg"""#coding=utf-8 # 载入MINIST数据需要的库from tensorflow.examples.tutorials.mnist import...
原创
2023-01-13 08:53:43
280阅读
训练模型import tensorflow as tfimport numpy as npimport matplotlib.pyplot as pltmoney=np.array([[109],[82],[99], [72], [87], [78], [86], [84], [94], [57]]).astype(np.float32)click=np.array([[11], [8], [8]
原创
2023-01-16 07:34:39
138阅读
对于某⼀个神经元来说,需要初始化的参数有两类:⼀类是权重W,还有 ⼀类是偏置b,偏置b初始化为0即可。⽽权重W的初始化⽐较重要,我们着 重来介绍常⻅的初始化⽅式。 1.随机初始化 随机初始化从均值为0
tensorflow2.0中模型的加载更加便捷。 我在github上新建了一个有关ner的项目,其中有对tensorflow2.0的api的一些详细使用。我们这里说一下几个保存权重的方法: 假如当前建立的模型代码如下:import tensorflow as tf
from tensorflow import keras
def get_model():
# Create a simple m
第一部分: 网站运营时间长了之后,或者引入的一些图片的链接失效了等等原因,不可避免的会出现图片加载失败的情况。这样给用户的体验非常不好,并且如果前端开发人员在设置img的css属性不当时,对页面的整体布局也会造成极大的影响。 比如,一个图片连接失效,即使我们添加了alt属性,让用户知道这是什么图片,但是显然体验也是极为糟糕的,如下所示: 那么有什么好的方法可以解决这
转载
2024-09-05 08:11:54
22阅读
简单恢复全部参数保存了所有的参数,然后加载所有的参数的方法如下:一般实验情况下保存的时候,都是用的saver类来保存,如下saver = tf.train.Saver()
saver.save(sess,"model.ckpt")加载时的代码saver.restore(sess,"model.ckpt")恢复部分参数的方法步骤TensorFlow restore部分变量tensorflow res
转载
2024-04-06 13:38:53
82阅读
本节介绍TensorFlow持久化的工作原理和持久化之后文件中的数据格式一、持久化代码实现TensorFlow提供了一个非常简单的API来保存和还原一个神经网络模型。这个API就是tf.train.Saver类。以下代码给出了保存TensorFlow计算图的方法。import tensorflow as tf
#声明两个变量并计算他们的和
v1 = tf.Variable(tf.constant
转载
2024-07-21 10:59:13
88阅读
一、.ckpt文件的保存和加载1、保存的文件 这是我保存的文件,保存一次有四个文件:checkpoint文件:用于告知某些TF函数,这是最新的检查点文件(可以用记事本打开看一下).data文件:(后面缀的那一串我也布吉岛是啥)这个文件保存的是图中所有变量的值,没有结构。.index文件:可能是保存了一些必要的索引叭(这个文件不大清楚)。.meta文件:保存了计算图的结构,但是
转载
2024-02-26 19:09:43
76阅读
在2018年TensorFlow开发者峰会上,我们(TensorFlow团队)宣布发布TensorFlow Probability:一种使机器学习研究人员及相关从业人员可以快速可靠地利用最先进硬件构建复杂模型的概率编程工具箱。TensorFlow Probability适用的情况包括:你想建立一个数据生成模型,推理其隐藏的过程。你需要量化预测中的不确定性,而不是预测单个值。你的训练集具有大量与数据
在进行深度学习开发之前,我们都必须面对的是数据加载问题。如何加载我们自己的数据,是我们不得不面对的一个问题,本篇以数据加载作为我们tensorflow实战的开始,教你手把手实现自己的模型训练。目录一、tensorflow常见的数据集格式二、内存数据2.1、数据集说明2.2、生成样本数据三、TFRecord数据四、Dataset数据集4.1、生成Dataset对象4.2、在Session中使用Dat
转载
2024-04-27 23:19:11
34阅读
在使用Tensorflow时,我们经常要将以训练好的模型保存到本地或者使用别人已训练好的模型,因此,作此笔记记录下来。 TensorFlow通过tf.train.Saver类实现神经网络模型的保存和提取。tf.train.Saver对象saver的save方法将TensorFlow模型保存到指定路径中,如:saver.save(sess, "/Model/model"), 执行
转载
2023-10-12 11:34:24
209阅读
模型保存和加载目的:当模型训练过程中,服务器宕机了,这个时候为了不浪费之前训练过的次数得到的权重和偏置值(这里用线性回归模型举例),需要的到最近时间点的一个权重和偏置,然后开始继续训练。• tf.train.Saver(var_list=None, max_to_keep=5)var_list:指定要保存和还原的变量。它可以作为一个dict或一个列表传递max_to_keep:指定要保存的最近检查
转载
2024-04-02 15:29:39
35阅读
前言是的,除了水报错文,我也来写点其他的。本文主要介绍Keras中以下三个函数的用法:fit()fit_generator()train_on_batch()当然,与上述三个函数相似的evaluate、predict、test_on_batch、predict_on_batch、evaluate_generator和predict_generator等就不详细说了,举一反三嘛。环境本文的代码是在以
转载
2024-06-27 05:07:33
40阅读
?大家好,我是Sonhhxg_柒,希望你看完之后,能对你有所帮助,不足请指正!共同学习交流? ?foreword✔说明⇢本人讲解主要包括Python、机器学习(ML)、深度学习(DL)、自然语言处理(NLP)等内容。如果你对这个系列感兴趣的话,可以关注订阅哟?所以到目前为止,我们只使用了适合内存的数据集,但深度学习系统通常在不适合 RAM 的非常大的数据集上进行训练。使用其他