开发工具: Java文件大小: 35 KB上传时间: 2015-03-02下载次数: 46提 供 者: 常杰详细说明:java语言写的特征提取源代码,有搞文字识别的可以下载一看,简单易学-Feature extraction of the Java language to write the source code, a character recognition can download a s
模式识别中进行匹配识别或者分类器分类识别时,判断的依据就是图像特征。用提取的特征表示整幅图像内容,根据特征匹配或者分类图像目标。常见的特征提取算法主要分为以下3类:基于颜色特征:如颜色直方图、颜色集、颜色矩、颜色聚合向量等;基于纹理特征:如Tamura纹理特征、自回归纹理模型、Gabor变换、小波变换、MPEG7边缘直方图等;基于形状特征:如傅立叶形状描述符、不变矩、小波轮廓描述符等;LBP特征
1 综述 (1)什么是特征选择 特征选择 ( FeatureSelection )也称特征子集选择(Feature Subset Selection , FSS ) ,或属性选择( AttributeSelection ) ,是指从全部特征中选取一个特征子集,使构造出来的模型更好。 (2...
转载 2013-11-24 16:35:00
120阅读
2评论
目录训练、验证、测试集偏差、方差机器学习基础正则化为什么正则化有利于预防过拟合dropout正则化理解dropout其它正则化方法归一化输入梯度消失/梯度爆炸神经网络的权重初始化梯度的数值逼近梯度检验梯度检验应用的注意事项【此为本人学习吴恩达的深度学习课程的笔记记录,有错误请指出!】训练、验证、测试集 应用深度学习是一个典型的迭代过程,需要多次循环往复,才能为应用程序找到一个称心的神经网络
基于边缘特征的二值化阈值选取方法 摘要  阈值选取是图象处理与分析的基础。针对几种常用的图象二值化自动选取阈值方法,通过计算机仿真对实验结果进行了比较研究。在此基础上,提出了一种新的图象二值化算法。该算法着重于在图象二值化时保留图象的边缘特征。实验结果表明,这个基于边缘特征检测算子的算法能很好地保留原图的边缘特征,并能处理低质量的图象。 关键词  图象分割&nbsp
转载 2023-12-08 10:32:09
79阅读
1.特征选择         特征选择是降维的一种方法,即选择对预测结果相关度高的特征或者消除相似度高的特征,以提高估计函数的准确率或者提高多维度数据集上的性能。 2.删除低方差特征        1)思路:设置一个阀值,对每个特征求方差,如果所求方差低于这个阀值,则删除此特征。默认情况下会删除0方
  这个项目大概是在2年前了,因为要用嵌入式编程,所以无法用opencv的库函数,一切算法纯靠手写(是不是很坑爹?),其中一部分程序需要计算Haar特征,于是就有了下面的故事:  在模式识别领域,Haar特征是大家非常熟悉的一种图像特征了,它可以应用于许多目标检测的算法中。与Haar相似,图像的局部矩形内像素的和、平方和、均值、方差等特征也可以用类似Haar特征的计算方法来计算。这些特征有时会频繁
算法是指解题方案的准确而完整的描述。即是一组严谨地定义运算顺序的规则,并且每一个规则都是有效的,且是明确的,没有二义性,同时该规则将在有限次运算后可终止。   1)算法的基本特征   (1)可行性:由于算法的设计是为了在某一个特定的计算工具上解决某一个实际的问题而设计的。   (2)确定性:算法的设计必须是每一个步骤都有明确的定义,不允许有模糊的解释,也不能有多义性。
转载 2023-10-27 04:35:16
31阅读
冒泡排序、选择排序、快速排序、插入排序、希尔排序、归并排序、堆排序Java排序算法1)分类:1)插入排序(直接插入排序、希尔排序)2)交换排序(冒泡排序、快速排序)3)选择排序(直接选择排序、堆排序)4)归并排序5)分配排序(箱排序、基数排序)所需辅助空间最多:归并排序所需辅助空间最少:堆排序平均速度最快:快速排序不稳定:快速排序,希尔排序,堆排序。1)选择排序算法的时候1.数据的规模;&nbsp
# Java FLANN 算法匹配特征点 ## 简介 在计算机视觉和图像处理领域,特征点匹配是一项重要的任务。特征点是图像中具有独特性质的点,例如角点、边缘点等。在匹配特征点的过程中,我们需要在一组图像中找到相似的特征点,从而实现图像的配准、目标识别等任务。FLANN(Fast Library for Approximate Nearest Neighbors)是一种快速的最近邻搜索算法,可以
原创 2023-08-01 10:25:52
136阅读
https://github.com/xiangdeyizhang/FaceTrack_ncnn_HyperFThttps://github.com/qaz734913414/Ncnn_FaceTrackNcnn_FaceTrack基于mtcnn人脸检测+onet人脸跟踪,在i7-9700k的cpu检测速度可高达250fps开发环境win7vs2015开源框架引用这是一个移动端快速视频多人脸跟踪的
特征检测opencv可以检测图像的主要特征,然后提取这些特征,使其成为图像描述符。特征特征就是有意义的图像区域,该区域具有独特性或易于识别性。角点与高密度区域是一个很好的特征,边缘可以将图像分为两个区域,因此可以看作很好的特征,斑点(与周围有很大区别的图像区域)也是有意义的特征。大多数特征检测算法都会涉及图像的角点、边和斑点的识别。Harris可用于识别角点。此函数可以很好的检测角点,这些角点在
转载 2024-01-21 02:16:22
97阅读
特征选择 | 递归特征消除算法筛选最优特征
有关本篇文章的课件大家可以参考这个链接:https://www.icourse163.org/learn/BIT-1001872001?tid=1001965001#/learn/content?type=detail&id=1002854140&cid=1003246094,数据集和slide的获取可以查看本专辑case 0中的相应链接。 下面简单地介绍一下代码(其实就是给原来的
文章目录4.4 特征工程-特征提取学习目标1 特征提取1.1 定义1.2 特征提取API2 字典特征提取2.1 应用2.2 流程分析2.3 总结3 文本特征提取3.1 应用3.2 流程分析3.3 jieba分词处理3.4 案例分析3.5 Tf-idf文本特征提取3.5.1 公式3.5.2 案例3.6 Tf-idf的重要性4 小结 4.4 特征工程-特征提取学习目标了解什么是特征提取知道字典特征
文章目录立体匹配算法分类SURF特征点检测原理绘制关键点与KeyPoint类Surf特征点检测demo1Surf特征描述子计算与特征匹配(暴力匹配BFMatch)Surf特征点暴力匹配demo2快速近似最近邻逼近搜索函数库(FLANN)FLANN匹配demo3FLANN+SURFdemo4BF+SIFT特征匹配demo5寻找已知物体demo6ORB特征提取简介ORB + FLANN-LSH(位置
摘要“数据与特征决定了一个模型的上限,而模型算法的目的则为逼近这个上限” 对于特征一般的处理流程是|:特征提取->特征清洗–>特征处理–>特征监控特征工程的一些处理方法:数值特征处理:方法一:无量纲处理:无量纲化使得不同规格的数据转换成为到同一规格。常见的无量纲化处理包括标准化与区间缩放法;一般而言,标准化的前提是特征服从正态分布,经过标准化后,将其转换为标准正态分布。区间缩放法
MATLAB求解矩阵特征值的六种方法关于这个特征值的求解一共六种方法 幂法 反幂法 QR方法 对称QR方法 jacobi方法 二分法接下来就着重讲解这些算法的是如何使用的幂法 算法如下, 输入: 矩阵A、非零矢量x0、maxit(2000)、tol(1.0e-7) 输出: 模的最大特征量a、模的最大特征量对应的特征向量xfunction [a,x,n] = pmethod(A,x0,maxit,t
0x00 前言我们在《特征工程系列:特征筛选的原理与实现(上)》中介绍了特征选择的分类,并详细介绍了过滤式特征筛选的原理与实现。本篇继续介绍封装式和嵌入式特征筛选的原理与实现。0x01 特征选择实现方法三:线性模型与正则化1.主要思想当所有特征在相同尺度上时,最重要的特征应该在模型中具有最高系数,而与输出变量不相关的特征应该具有接近零的系数值。即使使用简单的线性回归模型,当数据不是很嘈杂(或者有大
粗匹配: 暴力匹配(汉明距离):顾名思义,取a图中一个点,依次计算与b图中所有点的距离,找出距离最近点 FLANN 快速最近邻匹配:实现原理:对高维数据依次以其中一维作为划分依据将所有点构建一个KD-Tree,从集合中快速查找。效率比暴力匹配高的多。 去粗取精:匹配错误点剔除 1.Lower's算法
转载 2020-03-20 11:06:00
1076阅读
2评论
  • 1
  • 2
  • 3
  • 4
  • 5