Flink一览什么是FlinkApache Flink is a framework and distributed processing engine for stateful computations over unbounded and bounded data streams. Apache Flink 是一个框架和分布式处理引擎,用于在无边界和有边界数据流上进行有状态的计算。Flink
转载
2024-03-19 10:40:56
53阅读
1. Apache Flink 介绍Apache Flink 是近年来越来越流行的一款开源大数据计算引擎,它同时支持了批处理和流处理,也能用来做一些基于事件的应用。使用官网的一句话来介绍 Flink 就是 “Stateful Computations Over Streams”。首先 Flink 是一个纯流式的计算引擎,它的基本数据模型是数据流。流可以是无边界的无限流,即一般意义上的流处理。也可以
转载
2024-04-26 09:29:12
39阅读
Apache Flink 可实现可扩展并行度的 ETL、数据分析以及事件驱动的流式应用程序。Flink AP
原创
2021-12-30 10:32:23
966阅读
在 Flink 1.10 的 Table API 和 SQL 中,表支持的格式有四种:CSV Format
JSON Format
Apache Avro Format
Old CSV Format官网地址如下:https://ci.apache.org/projects/flink/flink-docs-release-1.10/dev/table/connect.html#table-form
转载
2023-07-11 17:30:21
736阅读
一、基础概念:批处理:持续收取数据,以时间作为划分多个批次的依据,再周期性地执行批次运算。(块状的划分) 不足:如果事件转换跨越了所定义的时间划分,传统批处理会将中介运算结果带到下一个批次进行计算;除此之外,当出现接收到的事件顺序颠倒情况下,传统批处理仍会将中介状态带到下一批次的运算结果中。流处理:假设有一个无穷无尽的数据源在持续收取数据,以代码作为数据处理的基础逻辑,数据源的数据经过代码处理后产
转载
2024-05-03 13:04:30
35阅读
文章目录应用案例——Top N使用 ProcessAllWindowFunction使用 KeyedProcessFunction 应用案例——Top N窗口的计算处理,在实际应用中非常常见。对于一些比较复杂的需求,如果增量聚合函数无法满足,我们就需要考虑使用窗口处理函数这样的“大招”了。网站中一个非常经典的例子,就是实时统计一段时间内的热门 url。例如,需要统计最近10 秒钟内最热门的两个 u
转载
2024-02-26 21:56:13
34阅读
文章目录Flink 流处理 API1.EnvironmentgetExecutionEnvironmentcreateLocalEnvironmentcreateRemoteEnvironmentSource2.从集合读取数据从文件读取数据读kafka 的数据自定义 SourceTransformmapflatMapFilterKeyBy滚动聚合算子(Rolling Aggregation)re
转载
2024-06-22 14:29:22
28阅读
创建执行环境 getExecutionEnvironment 创建一个执行环境,表示当前执行程序的上下文。 如果程序是独立调用的,则此方法返回本地执行环境;如果从命令行客户端调用程序以提交到集群,则此方法返回此集群的执行环境,也就是说,getExecutionEnvironment 会根据查询运行的 ...
转载
2021-09-02 16:32:00
309阅读
2评论
入门需要掌握:从入门demo理解、flink 系统架构(看几个关键组件)、安装、使用flink的命
原创
精选
2023-06-11 11:29:55
364阅读
批处理的特点是有界、持久、大量,非常适合需要访问全部记录才能完成的计算工作,一般用于离线统计。流处理的特点是无界、实时, 无需针对整个数据集执行操作,而是对通过系统传输的每个数据项执行操作,一般用于实时统计。 而在Flink中,一切都是由流组成的,Flink认为有界数据集是无界数据流的一种特例,离线数据是有界限的流,实时数据是一个没有界限的流,这就是所谓的有界流和无界流。无界流:意思很明显,只有开
Streaming 高性能 & 低延迟 Flink的流计算实现,仅需要很低的配置,就能实现高吞吐量和低延迟的流数据处理。 下面的图表显示了一个分布式流数据的计数任务,的性能和cpu核数的比值。 正好一次语义状态的计算 流数据应用可以在计算过程中保持自定义状态(state)。 Flink's checkpoint 的机制保证了,当发生故障时,状态的仅一次的语义。
转载
2024-04-26 12:07:12
34阅读
Flink流处理APIEnvironmentSource从集合读取数据从文件读取数据从Kafka读取数据自定义Source转换算子Transform简单的转换算子(Map、FlatMAp和Filter)键控流的转换算子(keyBy、滚动聚合和reduce)多流的转换算子(Split、select、connect、CoMap
原创
2022-03-30 18:05:30
1135阅读
本章介绍Flink的DataStream API的基础知识。我们将展示一个标准的Flink流式应用程序的结构和组件,还会讨论Flink的类型系统及其支持的数据类型,并给出数据转换和分区转换。我们将在下一章将讨论窗口操作符【windows operator】、基于时间的转换【time-based transformations】、有状态操作符【stateful operators】和连接器【conn
转载
2024-05-15 18:04:12
33阅读
DataPartObjpackage pers.aishuang.flink.streaming.entity;
import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;
/**
* 定义原始数据中jsob对象对应的部分所需字段对象
*/
@Data
@NoArgsCons
转载
2024-06-28 08:42:41
34阅读
流处理 package com.shujia.flink.core //导入隐式转换 import org.apache.flink.streaming.api.scala._ object Demo1StreamWordCount { def main(args: Array[String]): ...
转载
2021-08-04 20:27:00
227阅读
2评论
流处理引入为了理解流处理,我们先来看看批处理。批处理是把我们感兴趣的数据一起搜集下来加以处理,产生结果。比如说双十一当天有多少个用户购买了商品,每个用户分别买了多少件,分别是哪些品类的商品。过去需要第二天或者几个小时后才能出统计结果,我们才能知道双十一当天或者截止到某个小时有多少人买了东西等,这些是批处理的结果。批处理的结果生成相距用户实际行为的发生间隔了很长一段时间,往往是一天或者几小时。在现在
转载
2024-01-17 07:35:17
58阅读
前言碎语为了应对凯京科技集团的飞速发展,凯京科技研发中心2019定下了数据中台的目标。数据处理我们选择了批处理+流处理结合的大数据应用软件新秀Apache Flink,前几天阿里又发出好信息称将开源Blink(Flink早期分支迁出迭代优化),所以今天来近距离感受下Flink。博主之前没接触过大数据相关的东西,所以不细究其设计概念了。目标就是跑一个最简单的流处理的例子,后面慢慢深入后在和大家
转载
2024-03-07 15:17:09
33阅读
1. 正文2. 总结1.正文前面,我们已经学过了 一文搞懂 Flink 处理 Barrier 全过程,今天我们一起来看一下 flink 是如何处理水印的,以 Flink 消费 kafka 为例FlinkKafkaConsumer<String> consumer = new FlinkKafkaConsumer<String>(topics, new SimpleStrin
转载
2024-04-28 10:05:44
55阅读
和其他所有的计算框架一样,flink也有一些基础的开发步骤以及基础,核心的API,从开发步骤的角度来讲,主要分为四大部分1.Environment Flink Job在提交执行计算时,需要首先建立和Flink框架之间的联系,也就指的是当前的flink运行环境,只有获取了环境信息,才能将task调度到不同的taskManager执行。而这个环境对象的获取方式相对比较简单// 批处理环境
val en
转载
2024-03-25 13:57:15
233阅读
文章目录1.什么是分流?2. 过滤器(filter)3. 使用侧输出流(SideOutput) ?????1.什么是分流? 所谓“分流”,就是将一条数据流拆分成完全独立的两条、甚至多条流。也就是基于一个DataStream,
转载
2024-03-24 13:41:04
73阅读