1 前置知识1.1 ReLU的单侧抑制参考:RELU的单侧抑制单侧抑制含义:relu的曲线是一个折线,在小于0的部分一直为0,而在大于0的部分是一条斜率为1的直线。单侧抑制的优点:使得部分神经元可能输出为0,相当于在本次优化中,一些神经元不参与,进而破坏了全部神经元联动优化的陷阱,使得模型更加的鲁棒。所谓破坏联动优化陷阱,我的理解是类似于Dropout(如果模型参数过多,而训练样本过少,容易陷入过
转载
2023-10-22 09:04:08
73阅读
神经网络反向传播Backpropagation一、深度学习三部曲:定义一个函数model评估这个函数model选出最好的函数二、定义神经网络 本次学习使用的是全连接前馈神经网络(Fully Connect Feedforward Network) 以上图为例,此处所采用的sigmoid函数是。也就是节点的activation是sigmoid函数。从上图可以看出我们输入1对应的权重为1和-1,下一层
转载
2023-10-08 23:38:07
91阅读
本文主要讲解卷积神经网络(CNN)反向传播过程的matlab代码实现。01简介CNN主要由三种层堆叠而成,即卷积层、池化层和全连接层,在《 卷积神经网络(三
):反向
传播过程》中又推导了这三种层的误差反向传播公式。因此,CNN反向传播的代码主要由这三种层的反向传播代码构成。
02代码实现 在CNN反向传播时,输出层的误差(目标函数)会依次从后往前经过全连接层、池化层和卷
写在前面机器学习算法工程师的面试中常会问到一个很基础的问题,那就是反向传播公式的推导,今天看了下吴恩达老师的公开课《神经网络和深度学习》,将一些推导过程记录下来。逻辑回归反向传播的推导逻辑回归是最简单的神经网络,先从逻辑回归入手,有助于后面的理解。 上图是一个逻辑回归正向传播的示意图。具体细节不再描述。损失函数L(a,y)=−yloga−(1−y)log(1−a)
转载
2023-08-11 17:11:56
95阅读
神经网络的训练过程,就是通过已有的样本,求取使代价函数最小化时所对应的参数。代价函数测量的是模型对样本的预测值与其真实值之间的误差,最小化的求解一般使用梯度下降法(Gradient Decent)或其他与梯度有关的方法。其中的步骤包括: 初始化参数。求代价函数关于参数的梯度。根据梯度更新参数的值。经过迭代以后取得最佳参数,从而完成神经网络的训练。 其中最重要的步骤就是求梯度,这
反向传播算法(Backpropagation)是目前用来训练人工神经网络(Artificial Neural Network,ANN)的最常用且最有效的算法。其主要思想是:
(1)将训练集数据输入到ANN的输入层,经过隐藏层,最后达到输出层并输出结果,这是ANN的前向传播过程;
(2)由于ANN的输出结果与实际结果有误差
来判断自己的预测结果是否准确,这一步是至关重要的,因为只有知道自己预测结果是否准确,才能够对自身进行调整,好让结果越来越准确,这就是学习的过程。 我们人类学习也应该遵循这个道理,如果一个人一直不停的学,但是不验证自己的学习成果,那么有可能学的方向或学习方法都是错的,不停地学但是结果却都白学了。jack床长的配图很不错。我相信很多经历过学生时代的人,都会有上图这位同学的困惑,“我有时候已
概述径向基函数神经网络的基本原理,就是将样本对中输入变量和输出变量间的关系解析成多个径向基函数的总和。以二维输入样本X,一维输出样本Y为例,中心点为三个:
输入层
距离计算
基函数值计算
输出层计算
七、激活函数的使用 通过之前的学习我们都了解到了激活函数的作用,现在我们将会讲解一下激活函数在不同的神经网络中的应用: 1、首先是sigmoid 函数: a=11+e−z 它的图像可以表示为: 但是这个激活函数多使用在二分分类输出的神经网络,因为需要寻找1和0值,所以在一般的神经网络中我们很少使用这个激活函数。对应的导数为: g′(z)=a(1−a) 这为后面的计算节省了很多时间。 2
卷积神经网络一、卷积神经网络与BP网络(传统前馈神经网络)相比具有以下特点:(1)、采取局部连接(稀疏连接),减少了所需参数; (2)、可直接处理二维数据,故常被用于图片处理操作; (3)、具有三个基本层——卷积层、池化层、全连接层:卷积层CNN算法常用于图片处理,其中卷积层是通过多个卷积核对输入的图片像素矩阵进行局部连接,通过权值共享与卷积的方式进行图片的特征提取得到特征映射数据。(所以卷积核又
转载
2023-09-15 15:36:43
342阅读
深度学习是一种特殊的机器学习,通过学习将世界使用嵌套的概念层次来表示并实现巨大的功能和灵活性,其中每个概念都定义为与简单概念相关联,更为抽象的表示以较为不抽象的方式来计算。卷积神经网络是一种前馈型神经网络,受生物自然视觉认知机制启发而来。卷积神经网络一般用于计算机视觉领域,由于有时候图片像素很多,导致神经网络输入特征值的维数很多。CNN结构图 在结构图中,第一层输入图片,进行卷积操作,得到第二层深
卷积神经网络 CNN 文章目录卷积神经网络 CNN一、概述二、卷积的概念三、CNN原理3.1 卷积层3.2 池化层3.3 完全连接层3.4 权值矩阵BP算法3.5 层的尺寸设置四、CNN简单使用五、总结 一、概述 卷积神经网络(Convolutional Neural Network, CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。
转载
2023-07-10 16:09:28
1276阅读
1 基本概念BP神经网络是一种通过误差反向传播算法进行误差校正的多层前馈神经网络,其最核心的特点就是:信号是前向传播,而误差是反向传播。前向传播过程中,输入信号经由输入层、隐藏层逐层处理,到输出层时,如果结果未到达期望要求,则进入反向传播过程,将误差信号原路返回,修改各层权重。2 BP神经网络结构BP神经网络包含输入层、隐藏层和输出层,其中,隐藏层可有多个,其中,输入层和输出层的节点个数是固定的(
原创
2021-03-23 20:00:09
2842阅读
谷歌实际操作已经有3年了为什么还是没有将网络的能力指数增加原因是为什么这萝卜还用说坑一定是现在的神经网络本质就是无法指数级别优化的所以谷歌填坑这么多年仍然没有填好,但是走向正确的道理之前一定是经过错误,才能避免错误的如果谷歌得到了什么启示,
原创
2021-04-22 20:32:04
792阅读
谷歌实际操作已经有3年了为什么还是没有将网络的能力指数增加 原因是为什么 这萝卜还用说 坑一定是现在的神经网络本质就是无法指数级别优化的所以谷歌填坑这么多年仍然没有填好,但是走向正确的道理之前一定是经过错误,才能避免错误的 如果谷歌得到了什么启示,目前的神经网络会得到很大的改进,或者是颠覆的创造.人类的基因也是如此的, 我们的染色体经过不断的自我复制的过程中进步,但是基因不过是一个编码而已真正强大
原创
2022-04-06 10:13:22
340阅读
文章目录13.1 Deep Neural Network13.2 Autoencoder13.3 Denoising Autoencoder13.4 Principal Component AnalysisSummary 上节课介绍了神经网络,神经网络的核心是通过一层层的感知器从输入数据中提取模式特征,关键是求解每一层的权重向量,通过反向传播结合梯度下降算法可以很容易的求解出来。那么神经网络应该
转载
2023-09-22 11:52:05
1014阅读
人工神经网络——前馈神经网络——多层神经网络——CNN、DNN、DBN。CNN(卷积神经网络)CNN、RNN、LSTM等各种神经网络都是基于FCNN(全连接神经网络)出发的,最基础的原理都是由反向传播而来。反向传播示意图:神经网络的训练是有监督的学习,也就是输入X 有着与之对应的真实值Y ,神经网络的输出Y 与真实值Y 之间的损失Loss 就是网络反向传播的东西。整个网络的训练过程就是不断缩小损失
转载
2023-09-21 08:21:18
772阅读
AI领域是一个非常交叉的领域,涉及很多技术:数学、软体、硬件和,尤其还有硬件环节,不过一切来源或输入的入口一般有三个:一个是图像识别和处理是其中一个非常重要的环节,一个是自然语言处理,还有一个就是借口输入。一、这是一个python卷积神经网络的代码(开源):https://github.com/yangshun2005/CNN_sentence 二、下面是一些基本公式,以备忘:写CNN的
转载
2023-08-10 17:29:39
292阅读
有哪些深度神经网络模型目前经常使用的深度神经网络模型主要有卷积神经网络(CNN)、递归神经网络(RNN)、深信度网络(DBN)、深度自动编码器(AutoEncoder)和生成对抗网络(GAN)等。递归神经网络实际.上包含了两种神经网络。一种是循环神经网络(RecurrentNeuralNetwork);另一种是结构递归神经网络(RecursiveNeuralNetwork),它使用相似的网络结构递
转载
2023-08-03 06:54:54
574阅读
卷积学习网络1.卷积神经网络简介一般的前馈神经网络权重参数矩阵过大,过拟合风险很高,并且在做图像处理时需要将图像展开为向量,这会丢失一些空间信息,于是在此基础上开发出卷积神经网络作为优化。卷积神经网络是一类包含卷积计算且具有深度结构的前馈神经网络,与普通前馈神经网络不一样的是,卷积神经网络的输入层为图像数据(32x32x3矩阵)而不是将图像数据展开为向量计算,隐含层不再仅仅是神经层简单的线性非线性
转载
2023-08-18 20:40:14
468阅读