列表的常用函数介绍 delete,remove,add-to-list,cons,nreverse函数。0、简单定义一个列表:(setq list1 '(alpha beta gamma))列表的保存图示: +-------+---+ +------+---+ +-------+-----+ list1--->| alpha | *----->| beta
转载 2024-05-21 08:16:36
52阅读
目录一、梯度消失/爆炸问题1.1、Xavier( Glorot)初始化(使用逻辑激活函数):1.2、He 初始化(ReLU 激活函数及其变体,包括简称 ELU 激活):1.3、非饱和激活函数leaky ReLUELUSELU1.4、批量标准化使用 TensorFlow 实现批量标准化1.5、梯度裁剪二、复用预训练层2.1、复用 TensorFlow 模型只有复用的模型文件时:可以访问原始图形的Py
前言:    第二篇的文章中谈到,和部门老大一宁出去outing的时候,他给了我相当多的机器学习的建议,里面涉及到很多的算法的意义、学习方法等等。一宁上次给我提到,如果学习分类算法,最好从线性的入手,线性分类器最简单的就是LDA,它可以看做是简化版的SVM,如果想理解SVM这种分类器,那理解LDA就是很有必要的了。   谈到LDA,就不得
概念介绍移动平均值(EMAEMA(12)=前一日EMA(12)×11/13+今日收盘价×2/13 EMA(26)=前一日EMA(26)×25/27+今日收盘价×2/27计算移动均值是一个不断累加并调整系数的过程。与传统均值的区别在于:移动均值参考到该股票自上市以来每一天的收盘价,并在每次累计上新的收盘价时,弱化之前收盘价的比重,以实现动态累计的效果。离差值(DIF)DIF=今日EMA(12)-
转载 2024-04-03 07:15:50
93阅读
1)EDMA概要EDMA数据传输有两种发起方式:ü         CPU发起的EMDA数据传输(非同步方式):需要传输时,CPU设置ESR寄存器的相应位为1,从而触发一个EDMA事件的产生,事件对应的通道参数被送往地址硬件并且完成相应的处理,这种非同步方式的实时数据传输无需设定EER寄存器;ü &
转载 2024-04-11 15:21:35
261阅读
写在前面本文将从类的角度讨论python和c++在语法层面和使用层面的不同主要内容语法方面:先看c++类的一个简单的例子:class A { public: int i; void test() { std::cout << i << endl; } }; ..... A a; a.i = 100; a.test(); 输出100
转载 2024-10-14 13:58:05
11阅读
随着研发的深入,自动驾驶行业越来越显现出合纵连横的趋势。本周,英伟达阵营再次迎来新的合作伙伴——沃尔沃和瑞典汽车零部件供应商Autoliv。其实此前沃尔沃的自动驾驶项目“DriveMe”所用的测试车辆就搭载了英伟达DrivePX平台,该公司的自动驾驶汽车将于2021年正式上市。除此之外,英伟达还与德国汽车零部件供应商采埃孚和海拉建立了非排他性的合作关系,三家公司将共同推进自动驾驶行业人工智能技术的
转载 2023-11-21 22:04:41
134阅读
这是「EMA系列」文章之第二部分(Part 2),第一部分见 Desperate:「EMA系列之I」如何理解EMA指数移动平均值以及Python实现zhuanlan.zhihu.com 今天这篇文章在讨论两个EMA的进阶问题:如何确定EMA的warm-up时间? 如何更加合理地设置EMA的初始值?让我们从一个简单的例子开始。假设我们将观察到一个时间序列,每个观察值都是从标准
总结使用递归和循环两种方法来完成 python环境下循环相比于递归更快,更适应极端样本情况递归def _ema(arr,i=None): N = len(arr) α = 2/(N+1) #平滑指数 i = N-1 if i is None else i if i==0: return arr[i] else: data =
转载 2023-06-15 18:56:12
195阅读
Jensen 不等式f 是定义域为实数的函数,如果对于所有的实数x,f′′(x)≥0,那么 f 是凸函数。  显然我们的样本x,是有很多属性的,也就是说函数f的输入是一个向量。这时f是凸函数就等价为为f的 hessian 矩阵 H 是半正定的( H ≥ 0)。begin-补充-hessian矩阵f(x1,x2,...,xn) ,如果函数f&nbsp
在进行深度学习训练时,同一模型往往可以训练出不同的效果,这就是炼丹这件事的玄学所在。使用一些trick能够让你更容易追上目前SOTA的效果,一些流行的开源代码中已经集成了不少trick,值得学习一番。本节介绍EMA这一方法。1.原理:EMA也就是指数移动平均(Exponential moving average)。其公式非常简单,如下所示:\(\theta_{\text{EMA}, t+1} =
转载 2023-07-25 22:53:10
97阅读
 导读:随着科技的发展,其深度学习框架也越来越成熟,facebook旗下的pytorch便是在众多框架中脱颖而出的一个优秀的深度学习框架。什么是PytorchPytorch是基于python的科学计算包,为两类受众提供服务作为Numpy的替换,让你可以使用GPU的算力作为一个深度学习计算平台提供最大的计算灵活性与速度PyTorch 是最受欢迎的深度学习库之一,与 Keras 和 Tens
转载 2023-08-21 21:09:51
151阅读
开始学习期货的量化交易,从米筐API上拷贝的一个关于股指期货主力合约日级别MACD日回测的入门代码: 首先,先看一下关于MACD的介绍以及计算方式:MACD称为指数平滑移动平均线,是从双指数移动平均线发展而来,由快的指数移动平均线(EMA12)减去慢的指数移动平均线(EMA26)得到快线DIF,再用2×(快线DIF-DIF的9日加权移动均线DEA)得到MACD柱。 关于以上的几种指标: EM
转载 2024-04-12 05:29:53
125阅读
MNE-python读取.edf文件EDF,全称是 European Data Format,是一种标准文件格式,用于交换和存储医疗时间序列。该格式文件能够存储多通道的数据,允许每个信号拥有不同的采样频率。在内部,它包括标题和一个或多个数据记录。标题包含一些一般信息(患者标识,开始时间......等等)以及每个信号的技术规格(校准,采样率,过滤,......等等),编码为 ASCII 字符。数据记
# 实现“ema python”的步骤和代码解释 ## 1. 简介 在开始之前,让我们先了解一下“ema python”是什么。EMA(Exponential Moving Average)是一种常用的指标,用于平滑时间序列数据。在Python中,我们可以使用一些库来实现EMA的计算和绘制。 ## 2. 实现步骤 下面是整个实现“ema python”过程的详细步骤: | 步骤 | 描述 |
原创 2023-09-17 09:43:23
547阅读
Motivation2015年的论文《Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift》阐述了BN算法,这个算法目前已经被大量应用,很多论文都会引用这个算法,进行网络训练,可见其强大之处非同一般。论文作者认为:网络训练过程中参数不断改变导致后续每一层输入的分布也发
转载 8月前
46阅读
TA-Lib主要用来计算一些股市中常见的指标。 比如MACD,BOLL,均线等参数。   #-*-coding=utf-8-*- import Tkinter as tk from Tkinter import * import ttk import matplotlib.pyplot as plt import numpy as np import talib as t
长文本能力似乎成为象征着大模型厂商出手的又一新“标配”。国外,OpenAI经过三次升级,GPT-3.5上下文输入长度从4千增长至1.6万token,GPT-4从8千增长至3.2万token(token:模型输入和输出的基本单位);OpenAI最强竞争对手Anthropic一次性将上下文长度打到了10万token;LongLLaMA将上下文的长度扩展到25.6万token,甚至更多。国内,光锥智能获
1、enumerate() 函数 enumerate() 函数用于将一个可遍历的数据对象(如列表、元组或字符串)组合为一个索引序列,同时列出数据和数据下标,一般用在 for 循环当中。语法:enumerate(sequence, [start=0])参数:sequence – 一个序列、迭代器或其他支持迭代对象。start – 下标起始位置。返回值:返回 enumerate(枚举) 对象。>
转载 2023-11-19 14:51:12
389阅读
# Android从AlphaAlpha ![Android Logo](android_logo.png) ## 简介 Android操作系统是目前最流行的移动操作系统之一,它为开发者提供了丰富的工具和框架,使得创建高质量的移动应用变得简单而快捷。本文将带您了解Android的发展历程,从Alpha版本到现在的Alpha版本,以及一些常用的代码示例。 ## Alpha版本的Androi
原创 2023-08-24 05:21:52
128阅读
  • 1
  • 2
  • 3
  • 4
  • 5