现代基于光栅化的批处理技术一般有动态批处理,静态批处理,gpuinstance,srpbatch等。其中我要说的是gpuinstance,gpuinstance可以让同一个mesh,同一个material,来传递多个统一的数据结构到buff中。进行后面的着色等处理。其中数据结构是我们所关心的,因为我们可能需要创建不同的位置,旋转或物体颜色,法线等信息。gpuinstance使用比较简单,就是在sh
转载 2024-08-05 21:12:06
150阅读
python文件操作前言一、JSON是什么?二、python对文件的操作1.写入文件内容2.打开、读取、关闭文件文件数据若有问题采用两种解决方式file对象的函数列表写入文件内容对象转JSON内中的json形式的变量保存到文件读取json文件内容目录访问显示work路径下的所有类型为txt的文件总结 前言随着人工智能的不断发展,Python这门技术也越来越重要,很多人都开启了学习python,本
转载 2023-12-19 06:13:52
52阅读
提供一个API供使用者调用,大抵需求如下:输入某用户的位置(经纬度),提交到Web服务器,再把任务(找出该用户附近一公里内的商城推荐)提交到Spark集群上执行,返回计算结果后再存入到redis数据库中,供后台调用返回结果给使用方。网上关于这方面的资料大抵是基于spark-assembly-1.4.1-hadoop2.6.0.jar,而我们这边的环境是spark2.0-Hadoop2.6.0,版本
作者 | 车漾  阿里巴巴高级技术专家需求来源经过近几年的发展,AI 有了许许多多的落地场景,包括智能客服、人脸识别、机器翻译、以图搜图等功能。其实机器学习或者说是人工智能,并不是什么新鲜的概念。而这次热潮的背后,云计算的普及以及算力的巨大提升,才是真正将人工智能从象牙塔带到工业界的一个重要推手。与之相对应的,从 2016 年开始,Kubernetes 社区就不断收到来自不同渠
使用CDH6.3.2安装了hadoop集群,但是CDH不支持flink的安装,网上有CDH集成flink的文章,大都比较麻烦;但其实我们只需要把flink的作业提交到yarn集群即可,接下来以CDH yarn为基础,flink on yarn模式的配置步骤。一、部署flink1、下载解压官方下载地址:Downloads | Apache Flink注意:CDH6.3.2是使用的scala版本是2.
转载 2024-06-21 13:50:14
262阅读
Spark 之环境搭建与任务执行流程Spark 环境搭建常用端口号TIPSStandalone环境搭建Spark On Yarnstandalone-clientstandalone-clusterYarn ClientNoticeSpark Master HAYarn ClusterTipsPipeline 计算模式Q&A Spark 环境搭建常用端口号HDFS: http://nod
flink on yarn提交任务的两种方式flink on yarn 有两种提交方式:(1)、启动一个YARN session(Start a long-running Flink cluster on YARN);(2)、直接在YARN上提交运行Flink作业(Run a Flink job on YARN)。        简单bb两句,其实
在学习Spark过程中,资料中介绍的提交Spark Job的方式主要有三种:第一种:   通过命令行的方式提交Job,使用spark 自带的spark-submit工具提交,官网和大多数参考资料都是已这种方式提交的,提交命令示例如下:./spark-submit --class com.learn.spark.SimpleApp --master yarn --deploy-m
1、各种模式的运行图解1.1 Standalone-client使用SparkSubmit提交任务的时候,使用本地的Client类的main函数来创建sparkcontext并初始化它,为我们的Application启动一个Driver进程;1、Driver连接到Master,注册并申请资源(内核和内存)。2、Master根据Driver提出的申请,根据worker的心跳报告,来决定到底在那个wo
转载 2023-08-11 22:31:36
159阅读
一、背景 yarn层面做queue资源隔离,是为了划分不同资源给不同开发人员,甚至不同团队的人。 1、用户默认队列配置 某个用户或者某个小组的成员,默认情况下,提交到指定的队列中(而不是提交到root.default中) 2、队列权限配置 某个用户或者某个小组的成员,只能把任务提交到指定的队列中(队列权限) 3、hadoop group mapping 我们后续的配置中,会有用户组的权限配置,所以
转载 2023-08-21 14:15:38
316阅读
                                 &n
转载 2023-08-12 21:19:34
170阅读
Flink 命令行提交参数:1 参数必选 : -n,--container <arg> 分配多少个yarn容器 (=taskmanager的数量) 2 参数可选 : -D <arg> 动态属性 -d,--detached 独立运行 -
目录1 Spark概念1.1与Hadoop对比2 Spark核心模块3 Spark运行环境3.1 本地3.2 单独部署3.3 结合Yarn3.4 配置高可用3.5 容器部署4 Spark运行架构4.1 Driver4.2 Executor5 Spark核心编程5.1 RDD:弹性分布式数据集5.1.1 RDD转换算子5.1.2 RDD行动算子5.1.3 RDD序列化5.1.4 RDD依赖关系5.
转载 2024-07-12 17:37:49
232阅读
  1.spark提交流程  sparkContext其实是与一个集群建立一个链接,当你停掉它之后就会和集群断开链接,则属于这个资源的Excutor就会释放掉了,Driver向Master申请资源,Master会向work分配资源,则会在wordCount里面会构建Rdd,则它会会构建DAG,DAG又叫有向无环图,则有向无环图一旦触发Action的时候,这个时候就会提交任务,此时,这些任务就不会经
一、Yarn api 提交spark任务日常在编写spark任务时,大部分都是通过spark集群或者spark集群作为client,将任务提交到yarn里面来运行。常规的提交方式在做在线服务过程中就不太实用了,当然可以通过java api调用脚本的方式来提交,个人感觉有点不友好。所以经过研究以后,可以直接对接spark yarn api,方便动态提交计算任务,管理计算任务。第一步:将spark计算
转载 2023-07-25 23:20:28
275阅读
这里写目录标题5. Flink流处理API5.1 Environment执行环境5.2 Source数据源env.fromCollection 从集合读取数据env.readTextFile 从文件读取数据从kafka读取数据自定义数据源5.3 Transform转换算子一 单数据流基本转换:mapflatMapfilter二 基于key的分组转换keyBy()指定key的三种方式聚合(Aggr
转载 2024-03-10 22:25:43
254阅读
几乎所有的 Flink 应用程序,包括批处理和流处理,都依赖于外部配置参数,这些参数被用来指定输入和输出源(如路径或者地址),系统参数(并发数,运行时配置)和应用程序的可配参数(通常用在自定义函数中)。Flink 提供了一个简单的叫做 ParameterTool 的使用工具,提供了一些基础的工具来解决这些问题,当然你也可以不用这里所描述的ParameterTool,使用其他的框架,如:Common
Flink 大并发任务(超过 500 并发)在使用 keyBy 或者 rebalance 的情况下,将 bufferTimeout 设置为 1s 可以节省 30~50% 的 CPU 消耗。中等并发任务也会有不少收益。Flink在处理网络传输时,通过 NetworkBuffer来实现攒批,权衡吞吐和延迟的关系。Flink 1.10 及以后的版本直接通过配置参数 execution.buffer-ti
Flink 流处理 API1. EnvironmentgetExecutionEnvironmentcreateLocalEnvironmentcreateRemoteEnvironment2. Source从集合读取数据从文件读取数据从 kafka 读取数据自定义 Source3. TransformmapflatMapFliterkeyBy滚动聚合算子Reducesplit 和 select
从spark启动任务源头 $SPARK_HOME/bin/spark-submit 开始阅读spark源码。一、脚本阶段提交任务命令,先使用local模式spark-submit --master local --class com.lof.main.SparkPi /Users/user/Desktop/SparkPi.jarsparkPi代码:public class SparkPi {
转载 2023-09-04 10:19:51
76阅读
  • 1
  • 2
  • 3
  • 4
  • 5