机器学习之MATLAB代码--基于MISO的SSA-CNN-LSTM(八)代码数据结果 代码总的代码顺序,顺序而下:1、clc close all clear all %训练数据 data = xlsread('load data3.xlsx',1,'A2:G2001'); input = data(:,1:6); output = data(:,7); numTimeStepsTrai
转载 2023-08-26 08:15:16
316阅读
3点赞
6评论
目录1.算法描述2.仿真效果预览3.MATLAB核心程序4.完整MATLAB1.算法描述       首先将一群具有多个目标的个体(解集,或者说线代里的向量形式)作为父代初始种群,在每一次迭代中,GA操作后合并父代于自带。通过非支配排序,我们将所有个体分不到不同的pareto最优前沿层次。然后根据不同层次的顺序从pareto最优前沿选择个体作为下一个种群。出
Solving Large-Scale Multiobjective Optimization Problems With Sparse Optimal Solutions via Unsupervised Neural Networks (Ye Tian , Chang Lu, Xingyi Zhang , Senior Member , IEEE, Kay Chen Tan Fellow, I
⛄ 内容介绍强风引起的输电线振动是影响电能传输安全的主要气 象灾害之一 。高压输电塔线兼具高耸结构和大跨结构的 特点使得其对于风载荷非常敏感,并且由于输电塔线通常分 布在野外,所以对输电塔线周围的风速情况进行长时间的实 时监测存在较大困难。为输电塔线体系建立风速预测模型可以给输电塔线的结构设计提供参考依据,并且也可以给电力维护人员留出充足的时间来确
此示例说明如何使用长短期记忆 (LSTM) 网络对序列数据进行分类。要训练深度神经网络以对序列数据进行分类,可以使用 LSTM 网络LSTM 网络允许您将序列数据输入网络,并根据序列数据的各个时间步进行预测。此示例使用 [1] 和 [2] 中所述的日语元音数据集。此示例训练一个 LSTM 网络,旨在根据表示连续说出的两个日语元音的时序数据来识别说话者。训练数据包含九个说话者的时序数据。每个序列有
目录1.算法仿真效果2.算法涉及理论知识概要3.MATLAB核心程序4.完整算法代码文件1.算法仿真效果matlab2022a仿真结果如下:2.算法涉及理论知识概要      长短期记忆网络LSTM,Long Short-Term Memory)是一种时间循环神经网络,是为了解决一般的RNN(循环神经网络)存在的长期依赖问题而专门设计出来的,所有的RNN都具有一种重
目录1.算法描述2.仿真效果预览3.MATLAB核心程序4.完整MATLAB1.算法描述       长短期记忆网络LSTM,Long Short-Term Memory)是一种时间循环神经网络,是为了解决一般的RNN(循环神经网络)存在的长期依赖问题而专门设计出来的,所有的RNN都具有一种重复神经网络模块的链式形式。在标准RNN中,这个重复的结构模块只有
1 简介基于自编LSTM神经网络实现空调能耗数据预测。2 部分代码%% 程序说明 % 1、数据为7天,四个时间点的空调功耗,用前三个推测第四个训练,依次类推。第七天作为检验 % 2、LSTM网络输入结点为12,输出结点为4个,隐藏结点18个 clear all; clc; %% 数据加载,并归一化处理 [train_data,test_data]=LSTM_data_process(); d
原创 2022-09-10 22:12:00
499阅读
这个例子展示了如何使用深度学习长短期记忆(LSTM网络对文本数据进行分类。文本数据是有顺序的。一段文字是一个词的序列,它们之间可能有依赖关系。为了学习和使用长期依赖关系来对序列数据进行分类,可以使用LSTM神经网络LSTM网络是一种递归神经网络(RNN),可以学习序列数据的时间顺序之间的长期依赖关系。视频LSTM神经网络架构和工作原理及其在Python中的预测要向LSTM网络输入文本,首先要将
1.算法仿真效果matlab2022a仿真结果如下:   2.算法涉及理论知识概要长短期记忆网络LSTM,Long Short-Term Memory)是一种时间循环神经网络,是为了解决一般的RNN(循环神经网络)存在的长期依赖问题而专门设计出来的,所有的RNN都具有一种重复神经网络模块的链式形式。在标准RNN中,这个重复的结构模块只有一个非常简单的结构,例如一个t
在这里给大家介绍一下RNN以及LSTM(GRU)的原理RNNRNN概念循环神经网络 (Recurrent Neural Network, RNN),是一类用来处理序列数据的神经网络。类似于卷积神经网络专门用来处理网格化的数据(如一个图像),循环神经网络是专门用来处理序列(如 )的网络。同样,正如卷积神经网络可以很容易的扩展到具有较大宽度和高度的图像或者大小可变的图像,循环
一、LSTM描述长短期记忆网络LSTM,Long Short-Term Memory)是一种时间循环神经网络,是为了解决一般的RNN(循环神经网络)存在的长期依赖问题而专门设计出来的,所有的RNN都具有一种重复神经网络模块的链式形式。在标准RNN中,这个重复的结构模块只有一个非常简单的结构,例如一个tanh层。[概念参考:百度百科]LSTM网络结构如下图:[图片来源:OPEN-OPEN]单个LS
目录1.算法仿真效果2.算法涉及理论知识概要3.MATLAB核心程序4.完整算法代码文件1.算法仿真效果matlab2022a仿真结果如下: 2.算法涉及理论知识概要     长短期记忆网络LSTM,Long Short-Term Memory)是一种时间循环神经网络,是为了解决一般的RNN(循环神经网络)存在的长期依赖问题而专门设计出来的,所有的RNN都
本节主要学习使用matlab实现bp算法的一般步骤和过程。为了充分利用数据,得到最优的网络训练结果,在网络建立前应该进行的基本数据处理问题,包括: (1)BP神经网络matlab实现的基本步骤 (2)数据归一化问题和方法 (3)输入训练数据的乱序排法,以及分类方法 (4)如何查看和保存训练的结果 (5)每次结果不一样问题。用matlab实现bp,其实很简单,按下面步骤基本可以了BP神经
在处理时序数据,已经有RNN循环神经网络和GRU神经网络两个比较经典的网络。当然还有一种LSTM神经网络,长短期记忆神经网络。 从发展历史来看,是现有LSTM再有GRU的,但是从复杂度来看,LSTM比GRU更加复杂。先来回忆一下GRU,其有两个门(更新门和重置门),有一个记录历史信息的向量。 而LSTM就更加复杂了,无论是在门的数量上还是记录历史信息的向量上。LSTM神经网络其一共有3个门,2个状
# 神经网络多目标提取 ## 介绍 神经网络是一种模拟人脑神经元工作方式的计算模型,它可以通过学习和训练来识别、分类和处理复杂的数据。在计算机视觉领域,神经网络被广泛应用于目标检测、图像分割和特征提取等任务中。本文将介绍神经网络多目标提取的相关概念和方法,并给出相应的代码示例。 ## 多目标提取的概念 多目标提取是指从输入数据中提取多个目标的位置、形状和特征等信息。在计算机视觉中,我们经常
# Python多目标神经网络的实现 ## 概述 在本篇文章中,我们将详细介绍如何使用Python实现多目标神经网络。我们将通过以下几个步骤来完成这个任务: 1. 数据准备:首先,我们需要准备用于训练和测试的数据集。 2. 网络搭建:然后,我们需要构建一个多目标神经网络模型。 3. 模型训练:接下来,我们将使用数据集对模型进行训练。 4. 模型评估:最后,我们将评估训练后的模型的性能。 #
原创 9月前
60阅读
神经网络预测多目标 # 简介 神经网络是一种模拟人脑神经网络的计算模型,它可以通过学习大量数据来预测未知的输出。神经网络在众多领域中有着广泛应用,如图像识别、自然语言处理等。本文将介绍神经网络多目标预测中的应用,以及提供一个代码示例来帮助读者理解。 # 多目标预测 多目标预测是指在给定一组输入特征的情况下,预测多个输出结果。这个问题在现实生活中有很多应用,比如天气预测中需要预测温度、湿度和
本篇文章是论文的介绍性博客:Benchmarking Graph Neural Networks (https://arxiv.org/abs/2003.00982)的介绍性文章,有兴趣的可以下载原文阅读图0:在稀疏的2D张量上运行的GCN(顶部)和在密集的2D张量上运行的WL-GNN(底部)的标准实验。 图神经网络(GNN)如今在社会科学,知识图,化学,物理学,神经科学等的各种应用中得到广泛使用
 多目标的优化问题的一般公式可以如下:在两个目标函数中,它们之间可能是存在着一定的矛盾,也就是说,当一个目标函数的提高需要以另外一个目标函数的降低作为代价。在这个时候,我们就称,这样的两个解是非劣解,也就是长说的Pareto最优解。多目标优化算法就是要找到这些Pareto最优解。 在单目标优化问题中,通常最优解只有一个,而且能用比较简单和常用的数学方法求出其最优解。然而在多目标
转载 2023-10-22 07:54:30
327阅读
  • 1
  • 2
  • 3
  • 4
  • 5