LOL:才是联盟最尽职的辅助,一个盾技能全都挡虽然说辅助一哥的位置经常是锤石、泰坦之类的英雄,不过从尽职尽责上面来说,辅助一哥的位置绝对应该是的,他在保护AD方面绝对是足够尽职了,可以将所有打向AD的伤害给挡下来,那我们就看看的盾能挡住多少技能吧!的盾类似的就是亚索的风墙了,不过亚索风墙只能抵挡一些有弹道的飞行物,普攻的子弹也会算城市飞行物,所以才能被挡下来,潘森的E明确表示挡住
文章目录过滤器 - Redis 过滤器,Guava 过滤器 BloomFilter1、过滤器的起源,用途2、过滤器的概
原创 2022-05-26 08:23:00
1250阅读
一种节省空间的概率数据结构过滤器可以理解为一个不怎么精确的 set 结构,当你使用它的 contains 方法判断某个对象是否存在时,它可能会误判。但是过滤器也不是特别不精确,只要参数设置的合理,它的精确度可以控制的相对足够精确,只会有小小的误判概率。当过滤器说某个值存在时,这个值可能不存在;当它说不存在时,那就肯定不存在。打个比方,当它说不认识你时,肯定就不认识;当它说见过你时,可能
日常开发中,一个常见需求是判断一个元素是否在一个集合中。比如当你在浏览器中输入一个网址的时候,浏览器会判断网址是否在黑名单里。通常的解决方案是直接查询数据库,看看是否存在相关的记录,不过这往往会比较慢,于是我们又会引入缓存来提升速度,可是当数据比较多的时候,缓存会消耗大量的内存。有没有既速度快又节省内存的解决方案呢?本文介绍一种算法:过滤器(Bloom filter[1])。所谓过滤器,是
前言在「面试」Redis 这一篇就够了 这篇文中有提到用布过滤器来解决缓存穿透。那么,今天,他来了,他来了,他脚踏七彩祥云来了(手动狗头)是什么?弗雷尔卓德之心是 LOL 中偏辅助的英雄,下面给大家带来他的技能出装介绍,这时一个拖鞋啪的一声打在了我的脸上......过滤器(Bloom Filter) 是一种节省空间的概率数据结构,由 Burton Howard Bloom 在 1970
文章目录过滤器的在Redis中的作用布过滤器的场景什么是过滤器过滤器原理Redis 集成过滤器下载安装继承Redis 过滤器实战添加订单ID到过滤器判断订单是否存在Redission 过滤器实战 过滤器的在Redis中的作用在Redis 缓存击穿(失效)、缓存穿透、缓存雪崩怎么解决?中我们说到可以使用布过滤器避免「缓存穿透」。我们只要记录了每个用户看过的历史记录,
转载 2023-08-30 08:49:38
82阅读
pom引入依赖 一个小例子
转载 2019-08-16 09:40:00
133阅读
2评论
Guava 项目的11.0版中,一个新的类添加了进来—— BloomFilter(
转载 2022-10-18 15:34:57
629阅读
一、什么是缓存穿透  当用户想要查询一个数据,发现redis内存数据库没有,出现缓存未命中,于是转向持久层数据库查询。发现也没有,于是本次查询失败。当用户很多的时候,缓存都没有命中,于是都去请求了持久层数据库,给持久层数据库造成很大的压力,这就是缓存穿透。  于是我们就需要有一个能实现“快速判断是否存在”的方案,在确定不存在时就不在去后台查询数据库了,避免了缓存穿透,过滤器应运而生。二、什么是
# 使用 Redis 实现过滤器 ## 引言 在现代数据处理存储中,有时我们需要在性能内存之间找到平衡。过滤器(Bloom Filter)是一种空间效率极高的概率数据结构,用于测试一个元素是否在一个集合里面。它支持快速查询,但可能会出现假阳性(即判定一个元素在集合中,但实际上不在)。Redis 是一个优秀的键值存储系统,它支持多种数据结构,过滤器便是其中之一。本文将介绍如何在
原创 1月前
52阅读
  我们在使用新闻客户端看新闻时,它会给我们不停地推荐新的内容,它每次推荐时要去重,去掉那些已经看过的内容。问题来了,新闻客户端推荐系统如何实现推送去重的?  会想到服务器记录了用户看过的所有历史记录,当推荐系统推荐新闻时会从每个用户的历史记录里进行筛选,过滤掉那些已经存在的记录。问题是当用户量很大,每个用户看过的新闻又很多的情况下,这种方式,推荐系统的去重工作在性能上跟的上么? 
楔子我们前面介绍过 HyperLogLog 可以用来做基数统计,但它没提供判断一个值是否存在的查询方法,那我们如何才能在海量数据之中判断一个值是否存在呢?因为是海量数据,所以我们就无法将每个键值都存起来,然后再从结果中检索数据了,比如数据库中的 select count(1) from tablename where id='XXX',或者是使用 Redis 普通的查询方法 get XXX 等方式
过滤器(Bloom Filter),是1970年由提出的。它实际上是一个很长的二进制向量一系列随机映射函数。过滤器可以用于检索一个元素是否在一个集合中。它的优点是空间效率查询时间都远远超过一般的算法,缺点是有一定的误识别率删除困难。Bloom Filter原理当一个元素被加入集合时,通过K个散列函数将这个元素映射成一个位数组中的K个点,把它们置为1。检索时,我们只要看看这些点是不
前言前面在说缓存穿透的时候说到解决方案的时候正好有提到过滤器,正好现在就来说一说这个过滤器是怎么一回事,在说过滤器之前可能需要先说下位图算法位图位图(Bitmap),又称栅格图(英语:Raster graphics)或点阵图,是使用像素阵列(Pixel-array/Dot-matrix点阵)来表示的图像(摘自百度百科)。我们可以理解为是一个 bit 数组,每个元素存储数据的状态(由于每
当你遇到数据量大,又需要去重的时候就可以考虑过滤器,如下场景:解决 Redis 缓存穿透问题(面试重点);邮件过滤,使用布过滤器实现邮件黑名单过滤;爬虫爬过的网站过滤,爬过的网站不再爬取;推荐过的新闻不再推荐;什么是过滤器过滤器 (Bloom Filter)是由 Burton Howard Bloom 于 1970 年提出,它是一种 space efficient 的概率型
转载 2023-10-12 21:45:37
55阅读
 <dependency> <groupId>com.google.guava</groupId> <artifactId>guava</artifactId> <version>27.1-jre</version>
原创 11月前
127阅读
点击上方"张狗蛋的技术之路",选择“置顶或者星标” 你的关注意义重大! 程序世界的算法都要在时间,资源占用甚至正确率等多种因素间进行平衡。同样的问题,所属的量级或场...
原创 2021-04-20 09:25:00
233阅读
关于过滤器,这个名词其实在我学 redis 不久后就知道了,但是对他没有一种很深刻的理解。前言首次听到过滤器还是在Redis的缓存穿透的解决方案中看到的。当时一直没有应用场景,就一直摆在那,也没仔细学。但是现在感觉不卷,已经快没有活路,所以又开始看起了面试题。今天谈到的就是过滤器,偏向于理论知识卷又卷不动,躺又躺不平,麻了。一、什么是过滤器?过滤器,术语解释:它实际上是一个很长
目录前言一、什么是过滤器(Bloom Filter)二、过滤器的原理三、过滤器的工作流程四、过滤器的实际应用场景五、Java实现过滤器5.1、Guava5.2、Redission5.3、Apache Commons5.4、Jedis前言        想必大家都知道过滤器,它是为了预防黑客发起大量非法请求的一种手段,例如Redis的缓
关于BloomFilter先要了解什么是hash函数。哈希函数过滤器离不开哈希函数,所以在这里有必要介绍下哈希函数的概念,如果你已经掌握了,可以直接跳到下一小节。哈希函数的性质:经典的哈希函数都有无限大的输入值域(无穷大)。经典的哈希函数的输出域都是固定的范围(有穷大,假设输出域为S)当给哈希函数传入相同的值时,返回值必一样当给哈希函数传入不同的输入值时,返回值可能一样,也可能不一样。输入值会
  • 1
  • 2
  • 3
  • 4
  • 5