0.卷积层的理解实际上卷积核(convolution kernel)不是真的卷积,而是类似一个输入和输出之间的线性表达式.为什么叫做卷积呢, 因为两个次序上相邻的NxN卷积核有N-1的重叠. 本质上卷积核是一个线性过滤式, 比如输入时4x4的小宏块, 卷积核过滤的结果相当于一次线性计算. 卷积核之后的亚采样和池化都是为了把局部特征进行抽象化.但从数据传播的方向上来讲,卷积核进行特征提取,然后亚采样
一 卷积层说的很好nn.Conv2d空洞卷积主要用于分割,主要作用是提升感受野groups:用于轻量化
原创
2021-08-02 14:11:55
365阅读
卷积层的推导卷积层的前向计算 如下图,卷积层的输入来源于输入层或者pooling层。每一层的多个卷积核大小相同,在这个网络中,我使用的卷积核均为5*5。 如图输入为28*28的图像,经过5*5的卷积之后,得到一个(28-5+1)*(28-5+1) = 24*24、的map。卷积层2的每个map是不同卷积核在前一层每个map上进行卷积,并将每个对应位置上的值相加然后再加上一个偏置项。 每次
转载
2024-03-19 13:43:26
174阅读
网络要做的步骤:(一个中国人,给中国人教学,为什么要写一堆英语?)1, sample abatch of data(数据抽样)2,it through the graph ,get loss(前向传播,得到损失值)3,backprop to calculate the geadiets(反向传播计算梯度)4,update the paramenters using the gradient(使用梯
转载
2024-07-01 07:39:15
22阅读
Padding是填充的意思,用在卷积网络当中。当有一张 6 X 6 的图片,经过 3 X 3 的卷积核卷积之后(不使用padding)会得到一张 4 X 4 大小的图片,从输入到输出的计算方式为:(n-f+1)*(n-f+1) 如图1所示。  
转载
2024-01-03 09:38:47
59阅读
# PyTorch卷积层和Keras卷积层差别
深度学习的发展给计算机视觉领域带来了革命性的变化。卷积神经网络(CNN)作为一种主要的深度学习模型,在图像分类、目标检测和语义分割等任务中取得了巨大的成功。PyTorch和Keras是两个广泛使用的深度学习框架,它们都提供了构建卷积神经网络的工具。然而,PyTorch和Keras在卷积层的实现上存在一些差异。本文将介绍PyTorch卷积层和Kera
原创
2024-01-07 11:52:33
49阅读
深度学习之卷积神经网络(3)卷积层实现1. 自定义权值2. 卷积层类 在TensorFlow中,既可以通过自定义权值的底层实现方式搭建神经网络,也可以直接调用现成的卷积层类的高层方式快速搭建复杂网络。我们主要以2D卷积为例,介绍如何实现卷积神经网络层。 1. 自定义权值 在TensorFlow中,通过tf.nn.conv2d函数可以方便地实现2D卷积运算。tf.nn.conv2d基于输入和卷积
转载
2024-04-07 22:09:37
84阅读
1.如何理解卷积层和池化层? 卷积神经网络(Convolutional Neural Layer, CNN),除了全连接层以外(有时候也不含全连接层,因为出现了Global average pooling),还包含了卷积层和池化层。卷积层用来提取特征,而池化层可以减少参数数量。卷积它是使用卷积层(Convolutional layers)的神经网络,基于卷积的数学运算。卷积层由一组滤波器
转载
2024-01-02 14:35:00
92阅读
一、卷积神经网络(CNN)1、常见的CNN结构有:LeNet-5、AlexNet、ZFNet、VGGNet、ResNet等。目前效率最高的是ResNet。2、主要的层次: 数据输入层:Input Layer 卷积计算层:CONV Layer ReLU激励层:ReLU Incentive Layer(功能就是和激活函数一样,具有非线性的能力) 池化层:Pool
转载
2024-03-21 10:18:07
231阅读
一、简介 在本章中,我们展示了一种将卷积运算转换为矩阵乘法的方法。 这样的优点是计算速度更快,但会占用更多的内存。 我们使用im2col运算将输入图像或批处理转换为矩阵,然后将该矩阵与内核的重塑版本相乘。 然后最后,我们使用col2im操作将这个相乘后的矩阵重塑为图像。二、Im2col 如先前的源代码所示,我们使用了很多for循环来实现卷积,尽管这对于学习很有用,但速度不够快。 在本节中,我们将学
转载
2024-03-28 15:16:50
47阅读
卷积层的基本操作就是:卷积操作和池化操作两个1、标准卷积就是输入特征图(也可能是原图),用filter进行卷积操作,每个filter产生一个输出特征图,filter的个数决定了输出特征图的个数(也就是输出的通道数)注意:每个filter是有通道数的,默认通道数与输入特征图通道数一致相关计算,见上面文章链接相关网络:LeNet-5(1998):简单的卷积层和池化层相间搭建的网络,此外还有全连接层2、
转载
2024-05-11 19:22:22
37阅读
# 如何实现Python卷积层
## 一、整体流程
首先我们来看一下实现Python卷积层的整体流程,可以用以下表格展示:
| 步骤 | 操作 |
| ---- | ---------------------------------- |
| 1 | 导入必要的库 |
| 2
原创
2024-03-22 03:31:21
20阅读
1 前言 2012年我在北京组织过8期machine learning读书会,那时“机器学习”非常火,很多人都对其抱有巨大的热情。当我2013年再次来到北京时,有一个词似乎比“机器学习”更火,那就是“深度学习”。 本博客内写过一些机器学习相关的文章,但上一篇技术文章“LDA主题模型”还是写于2014年11月份,毕竟自2015年开始创业做在线教育后
转载
2024-09-24 19:16:43
35阅读
Network in Network 这篇论文中 提出了 1*1卷积层,那么问题来了,为什么可以用1*1卷积层来代替全连接层假设当前输入张量维度为6×6×32,卷积核维度为1×1×32,取输入张量的某一个位置(如图黄色区域)与卷积核进行运算。实际上可以看到,如果把1×1×32卷积核看成是32个权重W,输入张量运算的1×1×32部分为输入x,那么每一个卷积操作相当于一个Wx过程,多个卷积核就是多个神
转载
2024-04-07 14:24:04
62阅读
为了查看网络训练的效果或者便于调参、更改结构等,我们常常将训练网络过程中的loss、accurcy等参数。除此之外,有时我们也想要查看训练好的网络中间层输出和卷积核上面表达了什么内容,这可以帮助我们思考CNN的内在机制、调整网络结构或者把这些可视化内容贴在论文当中辅助说明训练的效果等。中间层和卷积核的可视化有多种方法,整理如下:1. 以矩阵(matrix)格式手动输出图像:用简单的LeNet网络训
转载
2024-06-03 10:11:54
56阅读
'''
Created on 2017年4月22日
@author: weizhen
'''
import tensorflow as tf
#通过tf.get_variable的方式创建过滤器的权重变量和偏置变量,上面介绍了卷积层
#的参数个数只和过滤器的尺寸、深度以及当前层节点矩阵的深度有关,所以这里声明的参数变量
#是一个四维矩阵,前面两个维度代表了过滤器的尺寸,第三个维度表示了当前层的深
转载
2023-11-28 14:52:42
47阅读
计算卷积层的输出输入张量 (batch_size,input_channels,h,w)batch_size为批量大小input_channels为输入的feature map的通道数h为张量的高w为张量的宽 卷积层为 : nn.Conv2d(input_channels, output_channels, kernel_size=(k_h, k_w),
转载
2023-10-12 12:22:19
92阅读
文章目录前言一、前置知识二、torch.nn.Conv2d三、torch.nn.Conv1d 前言 本系列主要是对pytorch基础知识学习的一个记录,尽量保持博客的更新进度和自己的学习进度。本人也处于学习阶段,博客中涉及到的知识可能存在某些问题,希望大家批评指正。另外,本博客中的有些内容基于吴恩达老师深度学习课程,我会尽量说明一下,但不敢保证全面。一、前置知识 上图就是一个多过滤器(过滤
转载
2023-09-02 11:19:13
163阅读
1. 卷积层(Convolution Layer):由若干个卷积核f(filter)和偏移值b组成,(这里的卷积核相当于权值矩阵),卷积核与输入图片进行点积和累加可以得到一张feature map。卷积层的特征:(1)网络局部连接:卷积核每一次仅作用于图片的局部(2)卷积核权值共享:一个卷积层可以有多个不同的卷积核,每一个filter在与输入矩阵进行点积操作的过程中,其权值是固定不变的。 
转载
2024-03-06 15:55:16
943阅读
# PyTorch 卷积层修改卷积核的科普文章
在深度学习中,卷积神经网络(CNN)是图像处理和计算机视觉领域中最常用的模型结构之一。卷积层是CNN的核心组成部分,通过卷积操作提取图像特征。本文将讨论如何在PyTorch中修改卷积核的参数,并提供相关代码示例,帮助大家更好地理解这一过程。
## 卷积层简介
卷积层的基本功能是对输入数据执行卷积操作,从而输出特征图(Feature Map)。卷
原创
2024-10-20 04:15:06
264阅读