(1)卷积层:用它来进行特征提取,如下:输入图像是32*32*3,3是它的深度(即R、G、B),卷积层是一个5*5*3的filter(感受野),这里注意:感受野的深度必须和输入图像的深度相同。通过一个filter与输入图像的卷积可以得到一个28*28*1的特征图,上图是用了两个filter得到了两个特征图;我们通常会使用多层卷积层来得到更深层次的特征图。如下:关于卷积的过程图解如下:输
转载
2024-06-07 11:28:14
112阅读
目录池化层为什么引入池化层概述为什么采用最大值方法实现过程全连接层概述全连接转为卷积卷积网络的结构总结层的组合模式 池化层为什么引入池化层通常,卷积层的超参数设置为:输出特征图的空间尺寸等于输入特征图的空间尺寸。这样如果卷积网络里面只有卷积层,特征图空间尺寸就永远不变。虽然卷积层的超参数数量与特征图空间尺寸无关,但这样会带来一些缺点。空间尺寸不变,卷积层的运算量会一直很大,非常消耗资源。卷积网络
转载
2024-09-05 13:01:44
27阅读
为什么可以通过降低维度呢? 因为图像具有一种“静态性”的属性,这也就意味着在一个图像区域有用的特征极有可能在另一个区域同样适用。因此,为了描述大的图像,一个很自然的想法就是对不同位置的特征进行聚合统计,例如,人们可以计算图像一个区域上的某个特定特征的平均值 (或最大值)来代表这个区域的特征。一般池化(General Pooling)池化作用于图像中不重合的区域(这与卷积操作不同),过程如下图。我
转载
2024-08-03 16:26:36
78阅读
池化层很久之前已经介绍了,这里回顾复习一下。池化层一般是夹在卷积层中间,用于数据压缩和参数压缩,减少过拟合,提高所提取特征的鲁棒性,同时可以提高计算速度。池化通常有两种——MAX和AVERAGE。最常用的是最大池化,下图是Max池化的一个示例:想象一下,对于一些像素很大的图片,在每个区域进行最大池化操作,那么数字越大,代表越容易被探测到,就可以作为该区域的特定特征。所以最大化运算的实际作用就是,如
转载
2024-05-21 16:21:16
36阅读
1、卷基层(Convolution)
关于卷积层我们先来看什么叫卷积操作: 下图较大网格表示一幅图片,有颜色填充的网格表示一个卷积核,卷积核的大小为3*3。假设我们做步长为1的卷积操作,表示卷积核每次向右移动一个像素(当移动到边界时回到最左端并向下移动一个单位)。卷积核每个单元内有权重,下图的卷积核内有9个权重。在卷积核移动的过程中将图片上的像素和卷积核的对应权重相乘,最后将所有乘积相加
1、Convolution层: 就是卷积层,是卷积神经网络(CNN)的核心层。 层类型:Convolution lr_mult: 学习率的系数,最终的学习率是这个数乘以solver.prototxt配置文件中的base_lr。如果有两个lr_mult, 则第一个表示权值的学习率,第二个表示偏置项的学习率。一般偏置项的学习率是权值学习率的两倍。 在后面的convolution_param中,我
在ConvNet体系结构中,在连续的Conv层之间定期插入池化层是很常见的。它的功能是逐步减小表示的空间大小,以减少网络中的参数和计算量,从而控制过拟合。池化层在输入的每个深度片上独立操作,并使用MAX运算在空间上调整其大小。最常见的形式是使用大小为2x2的过滤器的池化层,在输入的每个深度片上以2的宽度和高度下采样,舍弃75的激活值。池化层不会改变图像的深度。总的来说,池化层:接受大小为W1
转载
2024-05-22 20:02:22
26阅读
池化层也叫下采样层,对输入的特征图进行压缩,1.使特征图变小,简化网络计算复杂度;2.进行特征压缩,提取主要特征;3.降低过拟合,减小输出大小的结果,它同样也减少了后续层中的参数的数量。其具体操作与卷基层的操作基本相同,只不过下采样的卷积核为只取对应位置的最大值、平均值等(最大池化、平均池化),并且不经过反向传播的修改。pooling的结果是使得特征减少,参数减少,但pooling的目的并不仅在于
转载
2024-09-05 12:34:42
20阅读
常见的池化层它实际上是一种形式的降采样。有多种不同形式的非线性池化函数,而其中“最大池化(Max pooling)”是最为常见的。它是将输入的图像划分为若干个矩形区域,对每个子区域输出最大值。直觉上,这种机制能够有效地原因在于,在发现一个特征之后,它的精确位置远不及它和其他特征的相对位置的关系重要。池化层会不断地减小数据的空间大小,因此参数的数量和计算量也会下降,这在一定程度上也控制了过拟合。通常
转载
2024-03-14 07:06:41
70阅读
CNN框架:池化层(pooling layer)也叫做子采样层(subsampling layer),其作用是进行特征选择,降低特征数量,并从而减少参数数量。为什么conv-layer之后需要加pooling_layer?卷积层【局部连接和权重共享】虽然可以显著减少网络中连接的数量,但特征映射组中的神经元个数并没有显著减少。如果后面接一个分类器,分类器的输入维数依然很高,很容易过拟合。为了解决这个
转载
2024-03-19 13:41:05
458阅读
卷积层 池化层反向传播:1,CNN的前向传播a)对于卷积层,卷积核与输入矩阵对应位置求积再求和,作为输出矩阵对应位置的值。如果输入矩阵inputX为M*N大小,卷积核为a*b大小,那么输出Y为(M-a+1)*(N-b+1)大小。 b)对于池化层,按照池化标准把输入张量缩小。 c)对于全连接层,按照普通网络的前向传播计算。2,CNN反向传播的不同之处:首先要注意的是,
转载
2024-07-10 16:01:49
57阅读
在这里不想去介绍,什么是卷积?什么是池化?本文关注以下四个问题: 卷积层的作用? 池化层的作用? 卷积层的卷积核的大小选取? 池化层的参数设定?引出的另外两个问题: 全链接层的作用? 1*1的卷积核的作用? 卷积神经网络为什么效果这么好?卷积层的作用?总结如下:提取图像的特征,并且卷积核的权重是可以学习的,由此可以猜测,在高层神经网络中,卷积操作能突破传统滤波器的限制,根据目标函数提取出想要的特征
转载
2024-04-30 03:58:18
82阅读
池化层的输入一般来源于上一个卷积层,主要作用是提供了很强的鲁棒性(例如max-pooling是取一小块区域中的最大值,此时若此区域中的其他值略有变化,或者图像稍有平移,pooling后的结果仍不变),并且减少了参数的数量,防止过拟合现象的发生。池化层一般没有参数,所以反向传播的时候,只需对输入参数求导,不需要进行权值更新。  
转载
2024-04-07 20:55:55
39阅读
池化层 (Pooling Layers)除了卷积层,卷积网络也经常使用池化层来缩减模型的大小,提高计算速度,并使一些特征的检测功能更加强大(提高所提取特征的鲁棒性)。我们来看一下池化的例子。假设你有一个输入是一个4×4矩阵,并且你想使用一种池化类型,称为max pooling(最大池化)。这个最大池化的输出是一个2×2矩阵。实现的过程非常简单,将4*4的输入划分为不同的区域。如图所示,我将给四个区
卷积神经网络(CNN)由输入层、卷积层、激活函数、池化层、全连接层组成,即INPUT-CONV-RELU-POOL-FC(1)卷积层:用它来进行特征提取,如下:输入图像是32*32*3,3是它的深度(即R、G、B),卷积层是一个5*5*3的filter(感受野),这里注意:感受野的深度必须和输入图像的深度相同。通过一个filter与输入图像的卷积可以得到一个28*28*1的特征图,上图
转载
2024-04-26 15:27:51
41阅读
1.池化层Pooling层输出值的计算:
Pooling层主要的作用是下采样,通过去掉Feature Map(卷积的结果)中不重要的样本,进一步减少参数数量。
注:下采样——定义:对于一个样值序列间隔几个样值取样一次,这样得到新序列就是原序列的下采样。Pooling的方法很多,最常用的是Max Pooling。(1)Max Pooling Max Pooling实际上就是在n*n的样本中取最大值
转载
2024-07-06 04:53:50
115阅读
概述深度学习中CNN网络是核心,对CNN网络来说卷积层与池化层的计算至关重要,不同的步长、填充方式、卷积核大小、池化层策略等都会对最终输出模型与参数、计算复杂度产生重要影响,本文将从卷积层与池化层计算这些相关参数出发,演示一下不同步长、填充方式、卷积核大小计算结果差异。一:卷积层卷积神经网络(CNN)第一次提出是在1997年,杨乐春(LeNet)大神的一篇关于数字OCR识别的论文,在2012年的I
原创
2018-04-27 08:58:16
10000+阅读
1评论
1.如何理解卷积层和池化层? 卷积神经网络(Convolutional Neural Layer, CNN),除了全连接层以外(有时候也不含全连接层,因为出现了Global average pooling),还包含了卷积层和池化层。卷积层用来提取特征,而池化层可以减少参数数量。卷积它是使用卷积层(Convolutional layers)的神经网络,基于卷积的数学运算。卷积层由一组滤波器
转载
2024-01-02 14:35:00
92阅读
卷积神经网络(convolutional nural network ):更能保留输入的空间结构CNN的一些历史: 感知机(perceptron) 多层感知机(multilayer perceptron networks) 反向传播 AlexNet:与LetNet-5看上去差别不大,只是扩展得更大、更深。重点是能充分利用大量数据,也充分发挥了GPU并行计算能力的优势全连接层与卷积层的对比:卷积层的
转载
2024-06-09 06:42:04
329阅读
1、池化层的作用在卷积神经网络中,卷积层之间往往会加上一个池化层。池化层可以非常有效地缩小参数矩阵的尺寸,从而减少最后全连层中的参数数量。使用池化层即可以加快计算速度也有防止过拟合的作用。 2、为什么max pooling要更常用?通常来讲,max-pooling的效果更好,虽然max-pooling和average-pooling都对数据做了下采样,但是max-pooling感觉更像是
转载
2024-03-26 08:03:05
99阅读