作者:William Falcon 导读 之前通过动画介绍了RNN,介绍了attention,那么,今天再用动画给大家介绍下如何在RNN中使用attention来构建transformer。给你的神经网络增加注意力机制有点像想在工作的时候睡个午觉。你知道这样对你更好,每个人都想做,但是每个人都害怕。我今天的目标是不做任何假设,用动画来解释细节,让数学再次变得伟大!循环神经网络(RNN)RNNs
转载
2024-10-25 15:14:45
73阅读
这篇博客是对https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html#sphx-glr-intermediate-seq2seq-translation-tutorial-py中一些问题的解惑,可以配合使用,有其他不理解的也欢迎讨论。 原实验运行在老版本的python和torch上,在当前版本已经做不到
转载
2023-10-27 18:33:18
213阅读
Bi-LSTM(attention)代码解析——基于Pytorch以下为基于双向LSTM的的attention代码,采用pytorch编辑,接下来结合pytorch的语法和Attention的原理,对attention的代码进行介绍和解析。import torch
import numpy as np
import torch.nn as nn
import torch.optim as opti
转载
2023-09-05 22:18:59
293阅读
一、 数据集1. 数据分析 首先,先看看数据集长什么样。 这是最简单的单变量时间序列数据,是自2016/11/01到2021/10/29的上证医疗指数收盘价,由于这是单变量时间序列数据,所以不需要考虑特征工程,对
转载
2024-04-16 10:08:26
94阅读
CNN、RNN、GAN网络一、CNN**1、结构****2、应用****3、CNN的类型综述**二、RNN**1、结构****2、应用****3、RNN类型**三、GAN**1、结构****2、应用****3、GAN类型** 一、CNN1、结构卷积神经网络CNN(带有卷积的一类网络总称) 卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有
转载
2024-03-26 11:00:46
377阅读
CPO-CNN-LSTM-Attention、CNN-LSTM-Attention、CPO-CNN-LSTM、CNN-LSTM四模型对比多变量时序预测
LSTM 中实现attention:https://distill.pub/2016/augmented-rnns/, 文章链接中给出的第三方attention实现非常清晰! 理解LSTM/RNN中的Attention机制Posted on 2017-07-03 Deep Learning | 1 Comment&nbs
????欢迎来到本博客❤️❤️???博主优势:???博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。???本文内容如下:??? ⛳️赠与读者??做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录1. 引言2. CNN用于时序数据回归的优点3. CNN用于时序数据回归的缺点4. 代码实例总结 1. 引言时序数据回归预测在许多领域中都非常重要,包括金融市场预测、天气预测、能源消耗预测等。CNN,作为一种深度学习模型,通常与图像识别和处理任务关联在一起。然而,近年来,研究人员发现CNN也非常适合处理时序数据。2. CNN
转载
2024-08-08 22:12:50
28阅读
LSTM 隐藏层输出向量作为注意力层的输入,通过一个全连接层进行训练,再对全连接层的输出使用 softmax 函数进行归一化,得出每一个隐藏层向量的分配权重,权重大小表示每个时间步的隐状态对于预测结果的重要程度。权重训练过程如下:S。
原创
2022-11-20 20:01:55
4505阅读
LSTM网络LSTM网络和传统MLP是不同的。像MLP,网络由神经元层组成。输入数据通过网络传播以进行预测。与RNN一样,LSTM具有递归连接,使得来自先前时间步的神经元的先前激活状态被用作形成输出的上下文。和其他的RNN不一样,LSTM具有一个独特的公式,使其避免防止出现阻止和缩放其他RNN的问题。这,以及令人影响深刻的结果是可以实现的,这也是这项技术得以普及的原因。RNNs一直以来所面临的一个
转载
2024-02-19 11:40:37
262阅读
文章目录前言Gmlp输入与输出结构个人理解 前言前不久入职某大厂了,有点怀念无忧无虑的学生时代。入职后很快收到了第一个优化任务,算法岗的高不确定性确实会让人有一丝焦虑。目前体感来看,现有的深度学习模型性能非常依赖于数据质量,在数据质量足够的前提下,才有模型上的一系列操作。本文将总结类ViT网络结构Gmlp,论文题为Pay Attention to MLPs本文为个人总结,如有错误,欢迎指出。本文
DAS: A Deformable Attention to Capture Salient Information in CNNsAbstract卷积神经网络(cnn)在局部空间模式识别方面表现优异。对于许多视觉任务,如物体识别和分割,显著信息也存在于CNN的内核边界之外。然而,由于cnn的接受域有限,它很难捕捉到相关的信息。自关注可以改善模型对全局信息的访问,但会增加计算开销。我们提出了一种快
Attention机制梳理(一)——What is Attention in NLP?Attention机制梳理(二)——How do Attention derive BERT?Attention机制梳理(三)——What is Attention in CV?Attention机制梳理(四)——How to conbine Attention in both NLP and CV? 文章目录〇
转载
2024-08-08 22:04:06
66阅读
PyTorch Attention LSTM: 用于序列建模的强大网络
# 引言
深度学习在自然语言处理和序列建模领域取得了巨大的突破。其中,长短期记忆网络(LSTM)是一种非常受欢迎的神经网络架构,它可以在处理序列数据的任务中表现出色。然而,LSTM模型在处理长序列时存在一些挑战,其中包括如何有效地捕捉序列中重要的上下文信息。为了应对这个问题,注意力机制(Attention)被引入到LSTM
原创
2023-09-09 07:24:55
188阅读
哈喽,大家好!我,人称神秘小马哥又回来了,不知道大家还记不记得上期我的秘密三叉戟,轻松力压股市三大指数。
这期我给大家解密一下我三叉戟的第一根利器,LSTM模型,它在股价预测中更优于传统计量模型,并在语音识别,语言翻译和智能营销等领域,也显示了其强大力量。
1、解剖LSTM模型
LSTM模型是RNN模型的一个特殊例子,那RNN模型又是怎么一回事呢,别急,待
转载
2019-04-23 12:41:15
1302阅读
pytorch搭建CNN+LSTM+Attention模型实战详细教程
转载
2024-05-23 00:55:11
639阅读
RNN CNN等传统神经网络的局限在于:将固定大小的向量作为输入(比如一张图片),然后输出一个固定大小的向量(比如不同分类的概率)。不仅如此,CNN还按照固定的计算步骤(比如模型中层的数量)来实现这样的输入输出。这样的神经网络没有持久性:假设你希望对电影中每一帧的事件类型进行分类,传统的神经网络就没有办法使用电影中先前的事件推断后续的事件。 RNN 是包含循环的网络,可以把信息从上一步传递到下一步
转载
2024-03-18 13:31:56
221阅读
一.模型结构实现一个简单的孪生网络(结构如上图),做语义相似度:
1.从上图可看出整体的结构相对较简单,左右两边基本一致。A句和B句分别进入左右两个结构。输入到网络中是token embedding + position_embedding
2.再经过cnn-encoder进行编码
3.多头注意力层,self-attention的输入:一个是本句cnn-encoder
转载
2023-09-15 19:45:06
578阅读
导读目前采用编码器-解码器 (Encode-Decode) 结构的模型非常热门,是因为它在许多领域较其他的传统模型方法都取得了更好的结果。这种结构的模型通常将输入序列编码成一个固定长度的向量表示,对于长度较短的输入序列而言,该模型能够学习出对应合理的向量表示。然而,这种模型存在的问题在于:当输入序列非常长时,模型难以学到合理的向量表示。在这篇博文中,我们将探索加入LSTM/RNN模型中的atten