目录1、正向传播2、反向传播3、总结1、正向传播由于网络比较复杂,一个节点可能连接了很多个其他节点,推导反向传播的时候很容易搞不清楚一个节点的导数是从哪些节点“传播”过来的。所以我建议可以给正向、反向传播都画一个下面这种计算图,方便看出节点之间的关系。计算图(红色部分不属于时间步t):公式: 2、反向传播GRU反向传播的计算图(红色部分不属于时间步t):根据计算图,从上往下推
当前,深度学习已经应用到很多领域:无人驾驶汽车,黑科技以及图像分类等等,这些前沿的科技也面临许多挑战,如无人驾驶汽车需要进行物体的检测、行人的检测、标志的识别以及速度识别等等;图像分类已经成为一项重要技术,它是计算机视觉的核心任务,其困难之处在于图像中物体形状的改变、部分遮蔽以及背景的混入等等。让机器学习人类模拟人类大脑的思考过程,需要进行大量的实验研究才能正式投入运行,即将大量的数据分为训练集、
转载
2024-03-18 11:11:02
157阅读
在之前对多层感知机的实现过程中,只考虑了感知机在进行前向传播时所进行的计算,对于涉及梯度计算的反向传播并未进行过多赘述,仅调用深度学习框架所提供的反向传播函数进行自动梯度计算。因此在本节内容中,针对深度学习模型在训练时的前向传播以及反向传播过程进行了介绍。一、前向传播前向传播过程主要是指按输入层 -> 隐藏层 -> 输出层顺序传递数值进行计算并存储结果的过程。以上述图中多层感知机结构为
转载
2024-04-28 13:02:08
94阅读
一、梯度下降法1.什么是梯度下降法顺着梯度下滑,找到最陡的方向,迈一小步,然后再找当前位,置最陡的下山方向,再迈一小步… 通过比较以上两个图,可以会发现,由于初始值的不同,会得到两个不同的极小值,所以权重初始值的设定也是十分重要的,通常的把W全部设置为0很容易掉到局部最优解,一般可以按照高斯分布的方式分配初始值。 2.有两种计算梯度的方法:(1)慢一些
转载
2024-07-26 00:19:10
133阅读
目录【实验目标】【实验内容】【代码要求】【文档要求】【实验目标】 理解前向传播和反向传播应用作业一中提到的基本操作【实验内容】假设X有n个样本,属于m=3个类别, 表示样本属于第m类的概率,请实现的三次前向传播及反向传播(更新参数ω和b),每次反向传播结束后更新并输出参数ω和b的值,计算cross entropy loss,其中σ(∙)表示sigmoid函数。【代码要求】按代码模板实现函数功能【文
转载
2024-06-14 09:23:41
56阅读
原创
2024-08-07 17:21:09
77阅读
caffe中的网络结构是一层连着一层的,在相邻的两层中,可以认为前一层的输出就是后一层的输入,可以等效成如下的模型可以认为输出top中的每个元素都是输出bottom中所有元素的函数。如果两个神经元之间没有连接,可以认为相应的权重为0。其实上图的模型只适用于全连接层,其他的如卷积层、池化层,x与y之间很多是没有连接的,可以认为很多权重都是0,而池化层中有可能部分x与y之间是相等的,可以认为权重是1。
转载
2024-08-09 18:23:58
61阅读
前向传播如图所示,这里讲得已经很清楚了,前向传播的思想比较简单。 举个例子,假设上一层结点i,j,k,…等一些结点与本层的结点w有连接,那么结点w的值怎么算呢?就是通过上一层的i,j,k等结点以及对应的连接权值进行加权和运算,最终结果再加上一个偏置项(图中为了简单省略了),最后在通过一个非线性函数(即激活函数),如ReLu,sigmoid等函数,最后得到的结果就是本层结点w的输出。
转载
2024-03-11 07:10:59
605阅读
在神经网络模型中包括前向传播和反向传播那么究竟什么是前向传播,什么是反向传播呢前向传播:说的通俗一点就是从输入到得到损失值的过程,当然不仅仅是这么简单,中间还经过了一些处理,那么这些处理包括什么呢:1:从输入层开始:假设是一个形状是(2,3)2:经过权重参数(w(3,取决你的中间隐层1的形状)偏置参数(b)的处理后再经过一个激活函数处理得到中间隐层1,3:同理再经过第二个参数处理和激活函数得到中间
转载
2024-03-30 08:39:49
63阅读
代码与教程此博文是关于pytorch中文教程中手动在网络中实现前向传播和反向传播部分的代码解析。先贴上教程来源与代码:教程为:https://pytorch.apachecn.org/docs/0.3/pytorch_with_examples_pytorch-tensors.html
代码如下:import torch
dtype = torch.FloatTensor
# dtype = t
转载
2023-11-07 05:30:18
88阅读
建立神经网络的主要步骤是:1. 定义模型结构(例如输入特征的数量)2. 初始化模型的参数3. 循环:# 3.1 计算当前损失(正向传播)
# 3.2 计算当前梯度(反向传播)
# 3.3 更新参数(梯度下降)实现代码#单层神经网络,不含隐含层
import numpy as np
import matplotlib.pyplot as plt
import h5py #是与H5文件中存储的数据集进
文章目录前言一、基于类的前向传播二、基于函数的前向传播总结 前言最近开始着手语义分割方面的内容,由于刚开始入门深度学习,看了一下deeplab的源码,里面所有网络结构基本上都是由类进行定义的(目的是为了方便复用),而大部分博主的复现代码基本上都是基于函数实现,作为小白的我一时有点蒙圈。为了更好地理解前向传播吧以及类与函数定义的网络结构,本文分别用类核函数实现了简单的前向传播函数提示:以下是
转载
2024-04-22 19:49:50
32阅读
CNN前向传播与反向传播基本原理 参考blog..net CNN前向传播与反向传播优化 干货|(DL~3)deep learning中一些层的介绍www.zybuluo.com
个人理解:1、对输入图像进行采样,采样尺寸根据filter的尺寸进行设定; 2、将采样后的像素块拉伸为一个列向量;(3*3*3=27)3、根据步长及filter的size计算出
转载
2024-05-29 11:34:46
44阅读
假设神经网络结构如下图所示:有2个输入单元;隐含层为2个神经元;输出层也是2个神经元,隐含层和输出层各有1个偏置。为了直观,这里初始化权重和偏置量,得到如下效果:----前向传播----隐含层神经元h1的输入:首先:其次:最后:把以上三部分相乘,得到:根据梯度下降原理,从当前的权重减去这个值(假设学习率为0.5),得:同理,可以得到:这样,输出层的所以权值就都更新了(先不管偏置),接下来看隐含层:
LSTM简介LSTM(Long Short-Term Memory)长短期记忆网络,RNN的升级款,主要解决RNN中长时序列中的梯度消失问题。在长时间序列中,原始的RNN由于梯度的乘性问题,前面的序列的影响近乎为0,LSTM将其修正为加性问题。LSTM原理先上原理图:在LSTM中,第一阶段是遗忘门,遗忘层决定哪些信息需要从细胞状态中被遗忘,下一阶段是输入门,输入门确定哪些新信息能够被存放到细胞状态
转载
2024-07-25 07:36:58
64阅读
虽然学深度学习有一段时间了,但是对于一些算法的具体实现还是模糊不清,用了很久也不是很了解。因此特意先对深度学习中的相关基础概念做一下总结。先看看前向传播算法(Forward propagation)与反向传播算法(Back propagation)。1.前向传播如图所示,这里讲得已经很清楚了,前向传播的思想比较简单。 举个例子,假设上一层结点i,j,k,…等一些结点与本层的结点w有连接
转载
2023-07-20 12:43:43
173阅读
1. 前向传播算法所谓的前向传播算法就是:将上一层的输出作为下一层的输入,并计算下一层的输出,一直到运算到输出层为止。 对于Layer 2的输出 , , , 对于Layer 3的输出 , 从上面可以看出,使用代数法一个个的表示输出比较复杂,而如果
转载
2024-03-15 23:36:15
40阅读
前言定义网络如前所述,我们使用 nn.Module 在 PyTorch 中构建自定义架构。这里,我们可以为检测器定义一个网络。在 darknet.py 文件中,我们添加了以下类:class Darknet(nn.Module):
def __init__(self, cfgfile):
super(Darknet, self).__init__()
self
转载
2023-07-05 12:43:09
186阅读
前向传播与反向传播前向传播与反向传播的作用前向传播及公式前向传播范例反向传播及公式反向传播范例小结前向传播计算图 前向传播与反向传播的作用在训练神经网络时,前向传播和反向传播相互依赖。 对于前向传播,我们沿着依赖的方向遍历计算图并计算其路径上的所有变量。 然后将这些用于反向传播,其中计算顺序与计算图的相反,用于计算w、b的梯度(即神经网络中的参数)。随后使用梯度下降算法来更新参数。因此,在训练神
转载
2024-02-17 08:26:33
183阅读
本文总结:目标:得到更接近你想要的输出o1,o2,即更准确地预测过程:固定的输入x1,x2..==>通过反向传播不断更新权重==>得到更接近你想要的输出o1,o2...反向传播的过程:利用前向传播求出误差E,求出误差E对权重W的偏导数,利用,权重更新公式 更新权重W,其中 α 是学习率继续反向传播,更新更接近输入层的权重W,直到更新所有的权重W,循环1
转载
2024-03-29 11:34:02
289阅读