过滤器到底是个啥东西?        过滤器是一个不怎么精确的Set集合,当你使用它的 contains 方法判断某 个对象是否存在时,它可能会误判。但是过滤器也不是特别不精确,只要参数设置的合理,它的精确度可以控制的相对足够精确,只会有小小的误判概率。    &nb
过滤器的算法,用来判断一个元素是否在一个集合中。这种算法由一个二进制数组和一个Hash算法组成。它的基本思路如下:把集合中的每一个值按照提供的Hash算法算出对应的Hash值,然后将Hash值对数组长度取模后得到需要计入数组的索引值,并且将数组这个位置的值从0改成1。在判断一个元素是否存在于这个集合中时,你只需要将这个元素按照相同的算法计算出索引值,如果这个位置的值为1就认为这个元素极大可能在
原创 2022-03-09 17:37:02
1652阅读
过滤器1、 过滤器的概念2、 过滤器的插入与查找2.1 过滤器的插入2.2 过滤器的查找2.3 过滤器产生误判的原因3、过滤器的删除4、过滤器优点5、过滤器缺陷6、使用场景7、海量数据应用例题 1、 过滤器的概念过滤器(BloomFilter)是一种紧凑型的、比较巧妙的概率型数据结构,特点是高效地插入和查询,可以用来告诉你 某样东西一定不存在或者可能存
文章目录过滤器 - Redis 过滤器,Guava 过滤器 BloomFilter1、过滤器的起源,用途2、过滤器的概
原创 2022-05-26 08:23:00
1336阅读
由于Redis实现了setbit和getbit操作,天然适合实现过滤器redis也有过滤器插件。这里使用php+redis实现过滤器。首先定义一个hash函数集合类,这些hash函数不一定都用到,实际上32位hash值的用3个就可以了,具体的数量可以根据你的位序列总量和你需要存入的量决定,上面已经给出最佳值。class BloomFilterHash { /** * 由Justin
       过滤器:本质上过滤器是一种数据结构,比较巧妙的概率型数据结构,特点是高效的插入和查询,可以用来告诉你“某样东西一定不存在或者可能存在”。相比于传统的list,set,map等数据结构,它更高效,占用空间更少,但是缺点是其返回的结果是概率性的,而不是确切的。      由于Redis实现了setbit和get
转载 2023-07-12 11:15:27
68阅读
速记为什么使用布过滤器? 1.为了省内存,提高速率 2.因为1所以过滤器不需要百分百正确 3.说存在不一定存在,说不存在一定不存在 4.在解决缓存穿透的问题时,拦截了大部分的请求,只有小部分携带了大量信息的恶意请求访问到了数据库 5.不准确的原因是可能会和别的key发生冲突,所以位数组越大精确度越高,但是占用内存越多。所以在设置过滤器的时候,这个容错率是多少是百分之一还是百分之十,是否牺
1.使用场景:推荐系统给用户推荐新闻,避免重复推送。需要考虑问题:从用户观看历史中筛选出没有看过的新闻进行推送,就需要数据库中频繁的使用exists进行查询,但是当用户量很大时,数据库很难顶住压力。解决方法:1.1.使用缓存?但是日子长了,会浪费很大空间,不是长久之计,不是很好的解决办法。1.2.这时过滤器就可以很好的解决这个需求了,可以节约90%以上的空间,缺点就是稍微有那么一点不准确,存在
由于Redis实现了setbit和getbit操作,天然适合实现过滤器redis也有过滤器插件。这里使用php+redis实现过滤器。首先定义一个hash函数集合类,这些hash函数不一定都用到,实际上32位hash值的用3个就可以了,具体的数量可以根据你的位序列总量和你需要存入的量决定,上面已经给出最佳值。class BloomFilterHash{/*** 由Justin Sob
文章目录过滤器的在Redis中的作用布过滤器的场景什么是过滤器过滤器原理Redis 集成过滤器下载安装继承Redis 过滤器实战添加订单ID到过滤器判断订单是否存在Redission 过滤器实战 过滤器的在Redis中的作用在Redis 缓存击穿(失效)、缓存穿透、缓存雪崩怎么解决?中我们说到可以使用布过滤器避免「缓存穿透」。我们只要记录了每个用户看过的历史记录,
转载 2023-08-30 08:49:38
90阅读
在学习redis过程中提到一个缓存穿透的问题, 书中参考的解决方案之一是使用布过滤器, 那么就有必要来了解一下什么是过滤器。在参考了许多博客之后, 写个总结记录一下。一、过滤器简介什么是过滤器?本质上过滤器( BloomFilter )是一种数据结构,比较巧妙的概率型数据结构(probabilistic data structure),特点是高效地插入和查询,可以用来告诉你 “某
转载 2023-08-16 17:08:04
49阅读
python实现过滤器及原理解析  过滤器( BloomFilter )是一种数据结构,比较巧妙的概率型数据结构(probabilistic data structure),特点是高效地插入和查询,可以用来告诉你 “某样东西一定不存在或者可能存在”。这篇文章主要介绍了python实现过滤器 ,需要的朋友可以参考下 在学习redis过程中提到一个缓存击穿的问
本文目录本文导读一、什么是过滤器(Bloom Filter)二、过滤器的工作原理与设计思想三、Redis中的过滤器1、安装 RedisBloom1.1、docker镜像安装1.2、直接编译2、Redis过滤器的使用四、过滤器特点与使用场景总结本文导读本文系统性学习过滤器(Bloom Filter),了解什么是过滤器过滤器的原理,同时学习Redis中的过滤器
转载 2023-07-19 13:57:57
26阅读
1.什么是过滤器百度的概念:过滤器(Bloom Filter)是1970年由提出的。它实际上是一个很长的二进制向量和一系列随机映射函数。过滤器可以用于检索一个元素是否在一个集合中。它的优点是空间效率和查询时间都比一般的算法要好的多,缺点是有一定的误识别率和删除困难。 2.优点相比于其它的数据结构,过滤器在空间和时间方面都有巨大的优势。过滤器存储空间和插入/查询时间
你在么?在!一定在么?不在!一定不在么?你想要100%的准去性,还是99%的准确性附带较高的速度和较小的资源消耗。任何算法都是时间效益、资源消耗、准确性的平衡(1天的时间 10元的投入 生产10个单位的产品,还是 0.6天的时间 6元的投入 生产9个单位的产品)存在即合理,只是在不同场景下的不同选择。1.过滤器百度百科 过滤器(Bloom Filter)是1970年由提出的
一、前言        过滤器的作用是判断一个元素是否存在于一个集合中。        比如有一个集合存储了全国所有人的身份证号码,那么该集合大小有十几亿的大小,此时如果判断一个身份证是否存在于该集合中,最简单也是最笨的办法就是遍历集合
过滤器(Bloom Filter)是1970年由提出的。它实际上是一个很长的二进制向量和一系列随机映射函数。过滤器可以用于检索一个元素是否在一个集合中。它的优点是空间效率和查询时间都比一般的算法要好的多,缺点是有一定的误识别率和删除困难。本质上过滤器是一种数据结构,比较巧妙的概率型数据结构(probabilistic data structure),特点是高效地插入和查询,可以用来
目录1. 过滤器(Bloom filter)2. 假阳性概率分析(Probability of false positives)哈希函数个数 k 的确定3. 时间/空间复杂度3.1 时间3.2 空间4. 优缺点4.1 优点4.2 缺点5. 常见应用场景6. 实现1. 过滤器(Bloom filter)简单的说,过滤器由一个长度为 m 的位数组和 k 个哈希函数组成。数组初始化为0。当添
过滤器是一个很长的二进制向量和一系列随机映射函数。过滤器可以用于检索一个元素是否在一个集合中。它的优点是空间效率和查询时间都比一般的算法要好的多,缺点是有一定的误识别率和删除困难。但是过滤器可以控制错误率。具体的过滤器相关的内容可查找相关资料,非常详细,其优势就是占用内存比hash表要小得多,非常适合用于做过滤的场景Guava中的过滤器Guava是google开发的java基础
一:概念缓存穿透:查询一条不存在的数据,缓存中没有,则每次请求都打到数据库中,导致数据库瞬时请求压力过大,多见于爬虫恶性攻击过滤器过滤器(Bloom Filter)是1970年由提出的。它实际上是一个很长的二进制向量和一系列随机映射函数。过滤器可以用于检索一个元素是否在一个集合中。它的优点是空间效率和查询时间都比一般的算法要好的多,缺点是有一定的误识别率和删除困难。原理:使用二进
  • 1
  • 2
  • 3
  • 4
  • 5