bp算法在深度神经网络上为什么行不通BP算法作为传统训练多层网络的典型算法,实际上对仅含几层网络,该训练方法就已经很不理想,不再往下进行计算了,所以不适合深度神经网络。BP算法存在的问题:(1)梯度越来越稀疏:从顶层越往下,误差校正信号越来越小。(2)收敛到局部最小值:尤其是从远离最优区域开始的时候(随机值初始化会导致这种情况的发生)。(3)一般,我们只能用有标签的数据来训练:但大部分的数据是没标
转载
2023-10-31 21:56:59
226阅读
文章目录一、卷积神经网络简介(一)什么是卷积神经网络(二)卷积神经网络的结构(三)为何要用卷积神经网络二、PyTorch框架简介(一)环境搭建(二)一些基本概念和应用三、应用示例(一)项目目标(二)准备样本(三)构造卷积神经网络(四)训练并保存网络(五)加载并使用网络 PyTorch框架使得构造和训练神经网络方便了许多,为简述其用法,同时也为说明卷积神经网络的原理,本文举例说明如何基于PyTo
转载
2023-10-16 00:15:46
376阅读
搭建一个简易神经网络(PyTorch) 就是通过对 权重参数(w1,w2) 的更新来优化模型。 一个批次的数据从输入到输出的完整过程是:先输入 100 个具有 1000 个特征的数据;经过隐藏层后变成 100 个具有 100 个特征的数据;再经过输出层后输出 100 个具有 10 个分类结果值的数据;在得到输出结果之后计算损失并进行后向传播,这样一次模型的训练就完成了。'''导入必要的包,
转载
2024-04-27 07:11:12
242阅读
1.项目背景在人工神经网络的发展历史上,感知机(Multilayer Perceptron,MLP)网络曾对人工神经网络的发展发挥了极大的作用,也被认为是一种真正能够使用的人工神经网络模型,它的出现曾掀起了人们研究人工神经元网络的热潮。BP网络是在输入层与输出层之间增加若干层(一层或多层)神经元,这些神经元称为隐单元,它们与外界没有直接的联系,但其状态的改变,则能影响输入与输出之间的关系,每一层可
转载
2023-08-08 12:44:45
89阅读
前言本文通过一个简单的神经网络的实现,来介绍相关的pytorch函数,以及相关流程。前面首先介绍代码的实现,后面再针对问题进行相应的解释。前期准备1.pytorch中文文档2.神经网络基础3.BP算法4.文中代码来源代码实现import torch
import torch.nn.functional as F
from torch.autograd import Variable
import
转载
2023-10-18 13:52:57
66阅读
工欲善其事必先利其器,TensorFlow和Pytorch之争愈演愈烈,其实大可不必在框架工具选择上耗费精力,我们根据自己的喜好选择就好,毕竟只是工具而已。 今天小白就来教入门的小宝贝儿们使用Pytorch来搭建我们的第一个可以用来训练的神经网络。 如果对神经网络不太了解的小伙伴可以关注我,我会出一个系列教程的(嗯嗯,先挖坑)。首先我们要导入torch(搭建模型)、numpy(生成数据)、matp
转载
2023-11-06 21:43:57
124阅读
文章目录用numpy和torch实现单层神经网络对比1. 使用numpy实现2. 使用torch实现3. 使用optim自动更新的代码 用numpy和torch实现单层神经网络对比单层神经网络的基本原理请参考机器学习——神经网络(四):BP神经网络 主要的过程为:forward pass (正向传递)loss (计算损失)backward pass (反向更新)1. 使用numpy实现impor
转载
2023-12-05 09:13:56
119阅读
1、将原始数据集分为训练集和测试集2、对训练集进行批量梯度下降3、评估测试集的准确率4、模型的推理和训练在GPU上运行,但是验证一般在CPU上运行5、训练集是数据集的70%,随机取得,测试集占数据集的比重是0.3,随机取得数据import torch
import numpy as np
from torch.utils.data import Dataset
from torch.utils.d
转载
2024-04-12 22:12:27
555阅读
一、环境准备PyTorch框架安装,上篇随笔提到了 如何安装 ,这里不多说。matplotlib模块安装,用于仿真绘图。一般搭建神经网络还会用到numpy、pandas和sklearn模块,pip安装即可,这里我没有用到。import torch
from torch.autograd import Variable
import matplotlib.pyplot as plt 导
转载
2023-07-02 21:06:12
455阅读
目录前言课题背景和意义实现技术思路一、BP 网络的设计 二、BP 网络的数学模型三、BP 网络的学习与初始化四、LSTM结构 五、模型求解与数据分析 部分源代码实现效果图样例最后前言 ?大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少
转载
2024-01-30 10:19:23
67阅读
1.算法描述住宅价格是住宅市场的核心,住宅市场的变化关系到广大消费者的切身利益,商品房价格是升是降,销售是冷是旺,是社会关注的热点问题。因此,从不同角度来看,对商品住宅价格的研究都存在着重要的理论与现实意义。商品住宅价格的变化受市场供求、人口、居民收入水平、经济政策等诸多因素的影响,其随时间变动的过程具有很大的不确定性,为较全面地刻画各方面对住房价格的影响,以把握未来住房价格的变动趋势,将通过神经
转载
2023-05-25 13:58:35
379阅读
信号预处理为了对测量数据进行预处理,构建了一个全连接的前馈 NN 模型以将系统输入(即x 和 t)映射到其输出 u。图显示了用于去噪的 NN 模型的结构。它在输入层和输出层之间有五个隐藏层,神经元的数量分别为 50、100、500、100 和 50。该模型使用双曲正切激活函数(即 Tanh 函数)。建立均方误差 (MSE) 损失函数来评估测量和模型输出之间的差异。 Adam 优化器用于训练该模型,
转载
2023-08-12 20:58:59
156阅读
刚开始接触神经网络一般都是从分类应用开始看的,最典型的就是基于手写数字的识别,这也是绝大部分教程以及书籍上的例子,那么如何应用神经网络进行回归分析呢?这是我最初接触神经网络的一个很大的疑惑,随着后来的深入理解有了一些自己的体会。假设把你要解决的问题当作一个求解已知方程组的过程,应用神经网络去解决这个问题,只不过就是把目前已知的方程组变为了需要用训练集去拟合的神经网络模型。所以这就要求你先明确三点:
转载
2023-10-25 23:41:36
109阅读
文章目录前言一、简介二、BP神经网络的网络流程1.结构2.流程3.实例4.优缺点总结 前言BP(back propagation)神经网络是1986年由Rumelhart和McClelland为首的科学家提出的概念,是一种按照误差逆向传播算法训练的多层前馈神经网络,是应用最广泛的神经网络模型之一。一、简介BP神经网络是一种多层的前馈神经网络,其主要的特点是:是前向传播的,而误差是反向传播的。
转载
2023-08-14 19:34:27
212阅读
1、BP神经网络的原理的BP什么意思人工神经网络有很多模型,但是日前应用最广、基本思想最直观、最容易被理解的是多层前馈神经网络及误差逆传播学习算法(Error Back-Prooaeation),简称为BP网络。在1986年以Rumelhart和McCelland为首的科学家出版的《Parallel Distributed Processing》一书中,完整地提出了误差逆传播学习算法,并被广泛接受
转载
2023-10-31 21:57:09
74阅读
1. 神经网络的结构全连接(FC)网络结构是最基本的神经网络结构,每一个节点与上一层中的所有节点相连接。BP神经网络由输入层、隐藏层和输出层组成。输入层和输出层的节点数取决于问题需要的输出和输出变量的个数,隐藏层节点数需要由开发者进行调试。在神经网络中,只有数据非线性分离时才需要隐藏层。对于一般的数据集,1~2层隐藏层已经足够了。隐藏层中的神经元数量由开发者调试获得。在隐藏层中使用太少的神经元将导
转载
2023-07-11 22:22:22
172阅读
卷积神经网络一、卷积神经网络与BP网络(传统前馈神经网络)相比具有以下特点:(1)、采取局部连接(稀疏连接),减少了所需参数; (2)、可直接处理二维数据,故常被用于图片处理操作; (3)、具有三个基本层——卷积层、池化层、全连接层:卷积层CNN算法常用于图片处理,其中卷积层是通过多个卷积核对输入的图片像素矩阵进行局部连接,通过权值共享与卷积的方式进行图片的特征提取得到特征映射数据。(所以卷积核又
转载
2023-09-15 15:36:43
439阅读
BP神经网络是深度学习的重要基础,它是深度学习的重要前行算法之一,因此理解BP神经网络原理以及实现技巧非常有必要。接下来,我们对原理和实现展开讨论。1.原理 激活函数参考:深度学习常用激活函数之— Sigmoid & ReLU & Softmax 2.实现----Batch随机梯度法这里实现了层数可定义的BP神经网络,可通过参数net_struct进行定义网络结果,如定义只有输出
转载
2024-04-07 20:12:29
131阅读
一、神经网络其实就是输入变量先后进行加权求和与非线性变换之后得到输出。神经网络分为前向传播和反向传播。神经网络的工作原理:Ⅰ、前向传播:首先生成一个任意结构的神经网络,并且用一些字母来表达这些神经网络的参数,为了推导方便,我们将同一层的神经网络用一个向量去表示。权重和偏置分别用w和b表示,b是一个偏移量,在最后计算结果中加上它就可以。通过加权求和法的方式我们可以逐层得到神经网络下一层的值是什么。s
转载
2023-11-18 20:40:48
88阅读
摘要:给出反向传播算法的具体推导,并通过一个例子对反向传播的计算流程进行介绍。最后利用python从零实现一个神经网络。代码仅作为公式的理解,不具备重复使用能力。目录BP算法原理简单实例python从零实现各资料中的BP算法公式参考【1】“Neural Networks and Deep Learning”. Michael A. Nielsen.【2】“Pattern Classificatio
转载
2023-08-31 20:02:07
148阅读