我们知道,在任何机器学习模型中,都会有一个代价函数的概念。当训练样本一定时,这个代价函数实际上是一个自变量为模型参数,因变量为代价大小的函数。那么我们训练一个机器学习模型的目的就是,通过改变模型参数,来最小化模型的代价。那么问题来了,以什么样的方式来改变模型参数?一个很直观的方法是令模型的参数在其梯度方向上改变(关于梯度与函数大小的关系大家可以参考高等数学相应章节)。所以切入点是要求每个参数
转载
2024-03-20 12:12:50
61阅读
在一般的全联接神经网络中,我们通过反向传播算法计算参数的导数。BP 算法本质上可以认为是链式法则在矩阵求导上的运用。但 CNN 中的卷积操作则不再是全联接的形式,因此 CNN 的 BP 算法需要在原始的算法上稍作修改。这篇文章主要讲一下 BP 算法在卷积层和 pooling 层上的应用。原始的 BP 算法首先,用两个例子回顾一下原始的 BP 算法。(不熟悉 BP 可以参考How the backp
转载
2024-08-12 12:14:11
41阅读
前言上篇文章RNN详解已经介绍了RNN的结构和前向传播的计算公式,这篇文章讲一下RNN的反向传播算法BPTT,及RNN梯度消失和梯度爆炸的原因。BPTTRNN的反向传播,也称为基于时间的反向传播算法BPTT(back propagation through time)。对所有参数求损失函数的偏导,并不断调整这些参数使得损失函数变得尽可能小。先贴出RNN的结构图以供观赏,下面讲的都是图中的单层单向R
转载
2024-05-07 14:56:10
64阅读
4.2、初级(浅层)特征表示 既然像素级的特征表示方法没有作用,那怎样的表示才有用呢? 1995 年前后,Bruno Olshausen和 David Field 两位学者任职 Cornell University,他们试图同时用生理学和计算
转载
2024-08-08 12:05:51
33阅读
首先跟大家说声新年快乐啊,刚刚步入16年啊,啊哈哈。额,您继续看。。 暂时只包含全连接的BP,至于conv的。。预先说明 由于有些人实在太蠢,没办法只能加上这一段。首先,这里面什么看成变量,什么看成常量。 变量:网络的权值W(偏置b默认在W内。)以及输入X。 常量:就是target 你可能会说呃呃呃,不是输入都是有值得吗,不都是数吗,怎么会是变量啊。
转载
2024-05-10 16:13:05
42阅读
0 前言学习CNN的反向传播算法之前最后先弄明白全连接网络的反向传播算法。裂墙推荐这个篇博客神经网络BP反向传播算法原理和详细推导流程,保证博到病除。 CNN 中的卷积操作则不再是全连接的形式,因此 CNN 的 BP 算法需要在原始的算法上稍作修改。这篇文章主要讲一下 BP 算法在卷积层和 pooling 层上的应用。1 全连接网络的反向传播算法首先,用两个例子回顾一下原始的 BP 算法。(不熟悉
转载
2024-03-29 12:09:27
43阅读
本篇文章第一部分翻译自:http://www.wildml.com/2015/10/recurrent-neural-networks-tutorial-part-3-backpropagation-through-time-and-vanishing-gradients/,英文好的朋友可以直接看原文。最近看到RNN,先是困惑于怎样实现隐藏层的互联,搞明白之后又不太明白如何使用BPTT
转载
2024-04-21 14:34:06
24阅读
CCF BYu L , Dong J , Chen L , et al. PBCNN: Packet Bytes-based Convolutional Neural Network for Network Intrusion Detection[J]. Computer Networks, 2021, 194:108-117.PBCNN:基于分组字节的卷积神经网络,用于网络入侵检测 文章目录代码
转载
2024-08-08 11:48:05
75阅读
《Notes on Convolutional Neural Networks》中详细讲解了CNN的BP过程,下面结合Deep learn toolbox中CNN的BP源码对此做一些解析 卷积层: 卷积层的前向传导:
转载
2024-06-26 15:55:27
44阅读
第一章 神经网络基础目前,深度学习(Deep Learning,简称DL)在算法领域可谓是大红大紫,现在不只是互联网、人工智能,生活中的各大领域都能反映出深度学习引领的巨大变革。要学习深度学习,那么首先要熟悉神经网络(Neural Networks,简称NN)的一些基本概念。当然,这里所说的神经网络不是生物学的神经网络,我们将其称之为人工神经网络(Artificial Neural Network
转载
2024-08-12 17:43:43
73阅读
问题背景视觉问答(Visual Question Answering,VQA),是一种涉及计算机视觉和自然语言处理的学习任务。这一任务的定义如下: A VQA system takes as input an image and a free-form, open-ended, natural-language question about the image and produces a nat
转载
2024-09-03 13:56:16
41阅读
卷积神经网络是在BP神经网络的改进,与BP类似,都采用了前向传播计算输出值,反向传播调整权重和偏置;CNN与标准的BP最大的不同是:CNN中相邻层之间的神经单元并不是全连接,而是部分连接,也就是某个神经单元的感知区域来自于上层的部分神经单元,而不是像BP那样与所有的神经单元相连接。CNN的有三个重要的思想架构:局部区域感知权重共享空间或时间上的采样公式参考《Notes on Convo
传统全连接BP网络与CNN的一些总结与联系本文的目的是:1、 对刚学知识的温故知新;2、 作为一个笔记作用;3、 恳请对错误点或者不恰当点的指正。下面开始扯皮。网络前向传播略。BP网络反馈过程:证明过程略,主要是链式法则,网上一大堆证明。下面给出结论,各个符号的意义体会到其中道理即可。(粗体是向量or矩阵,正常体是标量)一个重要的定义------误差调整项(or灵敏度
转载
2024-03-21 22:49:36
45阅读
深度学习——CNN相关网络(一)1. CNN神经网络引入1.1 回顾BP网络首先,我们来看一下传统的BP网络的结构: 上图所展示的是BP网络的前向传播和反向传播的过程图。跟根据上面的图示,我们可以给出上述BP网络的某一个输出单元k的计算公式: 其中均为激活函数。在传统的神经网络,如果网络层特别深的情况下,会有以下几个问题:这种连接的方式会导致参数过多。如果采用sigmoid函数,会导致梯度消失或者
转载
2024-05-30 09:51:14
38阅读
《 Neural Networks Tricks of the Trade.2nd》这本书是收录了1998-2012年在NN上面的一些技巧、原理、算法性文章,对于初学者或者是正在学习NN的来说是很受用的。全书一共有30篇论文,本书期望里面的文章随着时间能成为经典,不过正如bengio(超级大神)说的“the wisdom distilled&nb
转载
2024-04-16 10:01:04
83阅读
9、Neural Networks:Learning(神经网络:学习)9.1 Cost function(代价函数)9.2 Backpropagation algorithm(反向传播算法)9.3 Backpropagation intuition(理解反向传播)9.5 Gradient checking(梯度检测)9.6 Random initialization(随机初始化)9.7 Putt
转载
2024-04-07 20:57:09
43阅读
1 RNN概述我们已经知道BP算法, CNN算法, 那么为什么还会有RNN呢?? 什么是RNN, 它到底有什么不同之处? RNN的主要应用领域有哪些呢?这些都是要讨论的问题.BP算法,CNN之后, 为什么还有RNN? 细想BP算法,CNN(卷积神经网络)我们会发现, 他们的输出都是只考虑前一个输入的影响而不考虑其它时刻输入的影响, 比如简单的猫,狗,手写数字等单个物体的识别具有较好的效果. 但是,
转载
2024-03-26 10:58:22
182阅读
彻底搞懂CNN
之前通过各种博客视频学习CNN,总是对参数啊原理啊什么的懵懵懂懂。。这次上课终于弄明白了,O(∩_∩)O~
上世纪科学家们发现了几个视觉神经特点,视神经具有局部感受眼,一整张图的识别由多个局部识别点构成;不同神经元对不同形状有识别能力,且视神经具有叠加能力,高层复杂的图案可以由低层简单线条组成。之后人们发
转载
2024-06-03 10:18:50
46阅读
CNN的整体网络结构卷积神经网络( Convolutional Neural Network,简称CNN)是深度学习的一种重要算法。卷积神经网络是在BP神经网络的改进,与BP类似,都采用了前向传播计算输出值,反向传播调整权重和偏置;CNN与标准的BP最大的不同是:CNN中相邻层之间的神经单元并不是全连接,而是部分连接,也就是某个神经单元的感知区域来自于上层的部分神经单元,而不是像BP那样与所有的神
转载
2023-10-24 22:14:21
663阅读
Network in Network(NIN)目录Network in Network(NIN)1 综述(1)1×1卷积的使用(2)CNN网络中不使用FC层(全连接层)(3)全局平均他化的优势2 网络结构(MLP卷积层)3 caffe中的实现4 1*1卷积的作用1 综述(1)1×1卷积的使用 文中提出使用mlpconv网络层替代传统的convo
转载
2024-09-28 09:19:33
28阅读