通常在进行边缘检测之后,需要通过边缘跟踪来将离散的边缘串接起来,常使用的方法为:边缘跟踪和区域生长两种方法。边缘跟踪又分为邻域和四邻域两种,具体原理可以参考残影、的博客。实现步骤:1、灰度化并进行Canny边缘检测2、按照预先设定的跟踪方向(顺时针)进行边缘跟踪3、每次跟踪的终止条件为:8邻域都不存在轮廓这里需要理解的点:代码中为什么更新当前方向时,需要curr_d -= 2,原因如下:一次
像素间的一些基本关系领域相邻像素——4邻域相邻像素——D邻域相邻像素——8邻域邻接性像素间的邻接性——4邻接像素间的邻接性——8邻接像素间的邻接性——m邻接通路连通分量距离领域相邻像素——4邻域4邻域:像素p(x,y)的4邻域是: (x+1,y);(x-1,y);(x,y+1);(x,y-1)用N4(p)表示像素p的4邻域 :相邻像素——D邻域D邻域( diagonal )定义:像素p(x,y)的
查找轮廓轮廓到底是什么?一个轮廓一般对应一系列的点,也就是图像中的一条曲线.表示的方法可能根据不同情况而有所不同.有多重方法可以表示曲线.在openCV中一般用序列来存储轮廓信息.序列中的每一个元素是曲线中一个点的位置.关于序列表示的轮廓细节将在后面讨论,现在只要简单把轮廓想象为使用CvSeq表示的一系列的点就可以了.函数cvFindContours()从二值图像中寻找轮廓.cvFindConto
邻域算法:8邻域就是判断周围8个像素点。如果这8个点中255的个数大于某个阈值则判断这个点为噪音,阈值可以根据实际情况修改。from PIL import Image import tesserocr def book_clear(image, threshold): image = image.convert("L") table = [] for i in ran
转载 2023-05-23 15:59:05
275阅读
知识要点1. OpenCV目标跟踪算法的使用大概可以分为以下几个步骤:创建MultiTracker对象:  trackers = cv2.legacy.MultiTracker_create()读取视频或摄像头数据:  cap = cv2.VideoCapture('./videos/soccer_02.mp4')框选ROI区域:  roi = cv2.selectR
1. CamShift思想               Camshift全称是"Continuously Adaptive Mean-SHIFT",即连续自适应的MeanShift算法,是MeanShift算法的改进。CamShift的基本思想是视频图像的所有帧作MeanShift运算,并
转载 2024-05-09 16:11:21
504阅读
# 邻域降噪算法的实现 ## 介绍 在图像处理领域,邻域降噪算法是一种常用的去除图像噪声的方法。该算法通过比较每个像素周围的个邻居像素的亮度来判断该像素是否为噪声,并进行相应的处理。本文将教你如何使用Python实现邻域降噪算法。 ## 算法流程 下面是邻域降噪算法的步骤: | 步骤 | 描述 | | --- | --- | | 1 | 读取待处理的图像 | | 2 | 将图像转换
原创 2023-07-23 08:22:58
240阅读
一:内容介绍 本节主要介绍OpenCV的imgproc模块的图像轮廓与分割部分: 1. 查找并绘制轮廓 2. 寻找物体的凸包 3. 使用多边形将轮廓包围 4. 图像的矩 5. 分水岭算法 6. 图像修补 二:学习笔记 1. findContours()函数查找图像轮廓和canny检测边缘、hough检测直线,这些都非常使用(参见:OpenCV成长之路(8):直线、轮廓的提取与描述
转载 2024-05-21 23:31:42
264阅读
开发环境为:win10+QT5.8+opencv3.2 数字图像的边缘检测是图像分割、目标区域的识别、区域形状提取等图像分析领域十分重要的基再赘述。 ...
原创 精选 2023-12-22 07:39:13
1766阅读
# Python邻域巡线 在计算机视觉和图像处理领域,邻域(8-connectivity)是处理图像中邻接像素关系的重要概念。在这里,我们将简要介绍邻域的概念及其在图像处理中的应用,并通过Python代码示例实现邻域的巡线算法。 ## 什么是邻域邻域是一个像素的周围个方向的邻居像素,这些方向包括上下左右以及四个对角线。下面的表格展示了一个像素及其邻域的相对位置: |
原创 9月前
492阅读
你曾经好奇过图形软件是如何追踪一个图像轮廓的吗?没有嘛?我实际上就没有好奇过,但是当我做一个复杂项目时候,我发现用边界矩形算法来追踪图形轮廓是多么的有魔力。处理的方法是很简单的:         1)找到一个图像边界上的像素(这跟边界矩形没关系,只是假设你找到了这个像素)。这个像素就是需要分析的。      
转载 2024-07-08 15:24:09
43阅读
      图像处理中有着目标识别与目标跟踪两种概念,后者也被常被成为Tracking。网上大部分的目标捕捉教程都是“目标识别”,譬如特征提取、光流法等等。然而将目标识别与目标跟踪结合使用,能稳定捕捉频率、提高性能。     先谈谈为什么单纯使用目标识别不能“稳定捕捉频率”“提高性能”:     1
opencv yyds 代码链接给一下添加链接描述 使用了OpenCV内置的多目标跟踪器,可以选择不同的跟踪算法进行目标追踪。以下是代码的主要流程和理论总结:导入所需的库和模块,包括argparse、time、cv2(OpenCV)和numpy。使用argparse设置命令行参数,其中–video用于指定要跟踪的视频路径,–tracker用于选择要使用的跟踪算法,默认为"csrt"。定义了一系列O
文章目录一、寻找轮廓findContours()1.要层次hierarchy2.不要层次hierarchy3.轮廓就是点集二、绘制轮廓drawContours()三、寻找凸包四、使用多边形1.外部矩形边界boundingRect()2.寻找最小包围矩形minAreaRect()3.寻找最小包围圆形minEnclosingCircle()4.用椭圆拟合二维点集fitEllipse()5.逼近多边形
转载 2024-04-27 10:28:29
974阅读
目录一、轮廓的绘制的作用二、内容介绍三、代码实现一、轮廓的绘制的作用用于图形分析和处理:轮廓是图像中物体边界的描绘,通过绘制轮廓,我们可以更好地分析和理解图像中的物体和形状。例如,轮廓可用于识别和区分不同的对象、测量物体的面积和周长等。辅助机器视觉和物体识别:轮廓可以帮助计算机视觉系统(如机器人、自动驾驶车辆等)更好地识别和理解其环境。例如,通过轮廓,系统可以识别出不同的人、物体或道路标志。特征提
轮廓特征目标查找轮廓的不同特征,例如面积,周长,重心,边界框等。你会学到很多轮廓相关函数矩   图像的矩可以帮助我们计算图像的质心,面积等。详细信息请查看维基百科Image Moments。   函数 cv2.moments() 会将计算得到的矩以一个字典的形式返回。如下:# -*- coding: utf-8 -*- """ Created on Sun Jan 12 18:30:17 2014
一、OpenCV中的轮廓 图像的上半部分是一张白色背景上的测试图像,包含了一系列标记 A 到 E的区域。寻找到的轮廓被标记为 cX 或 hX, 其中c 代表 “轮廓(contour)”,h 代表 “孔(hole)”(也可以理解为内轮廓)。 同样,左图是原始图片,右图是寻找到的轮廓,它也采用了类似的标注方法。 二、函数调用细节 寻找轮廓的主要函数是 cv::
转载 2024-08-29 16:09:38
311阅读
一、概述  使用发现并绘制轮廓比较简单,只需要调用findContours和drawContours两个方法就行了,但前提是要对图像做一下预处理。  实现步骤如下:  1.将原图转换为灰度图像  2.执行二值分割  3.去除无用的噪声  4.发现轮廓  5.绘制轮廓  6.展示轮廓图二、示例代码  Mat src = imread(inputImagePath); imshow("原始图"
转载 2023-06-30 23:56:28
421阅读
OpenCV 轮廓基本特征  分类: OpenCV(35)  一、概述       我们通过cvFindContours( )函数获取得图像轮廓有何作用呢?一般来说,我们对轮廓常用的操作有识别和处理,另外相关的还有多种对轮廓的处理,如简化或拟合轮廓,匹配轮廓到模板,等等。
目标了解轮廓是什么。学习查找轮廓,绘制轮廓等。 cv2.findContours(),cv2.drawContours() 什么是轮廓?轮廓可以简单地解释为连接具有相同颜色或强度的所有连续点(沿边界)的曲线。轮廓是用于形状分析以及对象检测和识别的有用工具。为了获得更高的准确性,请使用灰度图像。因此,在找到轮廓之前,请应用阈值或canny边缘检测从OpenCV 3.2开始,cv2.findConto
转载 2024-02-19 18:51:03
197阅读
  • 1
  • 2
  • 3
  • 4
  • 5