用c语言求解五位数的黑洞数问题。 任意一个5位数,比如:34256,把它的各位数字打乱,重新排列,可以得到一个最大的数:65432,一个最小的数23456。求这两个数字的差,得:41976,把这个数字再次重复上述过程(如果不足5位,则前边补0)。如此往复,数字会落入某个循环圈(称为数字黑洞)。比如,刚才的数字会落入:[82962, 75933, 6395
# 理解并实现“数字黑洞6174”的过程 数字黑洞6174,亦称卡帕雷数,是一个有趣的数学现象。任何四位数的数字,经过一定步骤都将归结为6174。实现这一过程的程序可以帮助我们更好地理解数字的排序与运算。 ## 整体流程概述 我们可以将实现数字黑洞6174的流程分为以下几个步骤: | 步骤 | 描述
原创 2月前
41阅读
# 利用 Python 实现 6174 数字黑洞的证明 在计算机科学和数学中,6174 数字黑洞(即卡帕雷转变)是一个颇受欢迎的谜题,它涉及到一系列数字的运算过程,最终会收敛到 6174 这个数字。本文旨在教会新手如何使用 Python 实现这一过程,并呈现出完整的代码和解说。 ## 整体流程 **6174黑洞过程的步骤如下:** | 步骤 | 描述
原创 1月前
43阅读
## 理解6174数字黑洞问题 6174数字黑洞问题是一个有趣的数学现象,任何四位数字的整数,只要不是所有数字都相同,都能通过一系列计算最终回到6174这个特殊的数。 ### 流程概览 要实现6174数字黑洞的过程,我们可以将整个步骤分成几个清晰的阶段,如下表所示: | 步骤 | 操作说明 | |------|-----------
原创 29天前
6阅读
# 数字黑洞6174:探索神秘的数学魔法 在数学的世界里,隐藏着许多神秘而有趣的现象。其中,数字黑洞6174是一个备受关注的数学“魔法”,它能够让我们领略到数字之间隐藏的奥秘。本文将介绍数字黑洞6174的起源、特性以及通过Python代码实现的方法,带领读者一同探索这个神秘的数字世界。 ## 数字黑洞6174的起源 数字黑洞6174最初由印度数学家Kaprekar提出,并以他的名字命名。这一
原创 6月前
584阅读
1955年,卡普耶卡(D.R.Kaprekar)研究了对四位数的一种变换:任给出四位数k0,用它的四个数字由大到小重新排列成一个四位数m,再减去它的反序数rev(m),得出数k1=m-rev(m),然后,继续对k1重复上述变换,得数k2.如此进行下去,卡普耶卡发现,无论k0是多大的四位数,只要四个数字不全相同,最多进行7次上述变换,就会出现四位数6174。因此这项研究在国际数学界又被称为“马丁猜想—6174问题”。有趣的数字6174随机生成四个不完全一样的数字(0000,1111,2222,等排除.
原创 2021-06-05 19:30:29
424阅读
#include<stdio.h> int div(int array[4], int b) { int c = 0, i = 3;//细节 while (b > 0) { c = b % 10; array[i] = c; b = b / 10; i--; } return 0; } void M ...
转载 2021-08-24 13:39:00
273阅读
2评论
# Python数字黑洞代码实现指南 ## 概述 在本文中,我们将介绍如何使用Python编写一个数字黑洞代码数字黑洞是一个有趣的数学游戏,它的规则如下:给定一个任意正整数,将其各个位的数字按照升序和降序重新排列得到两个新的数字,然后将两个数字相减得到一个新的数字。重复这个过程,直到得到的数字不再变化或者变为0为止。最终的结果就是一个数字黑洞。 为了帮助你更好地理解实现过程,我们将按照以下步
原创 2023-09-13 06:03:10
414阅读
Time Limit: 3 secondMemory Limit: 2 MB已知一个任意的不完全重复的四位正整数,将其数字重新组合成一个最大的数和一个最小的数并使之相减,这称为“重排求差”。其结果不足四位时,右边补0,组成大的四位数;左边补0,组成小的四位数。重复这个过程,最多七步,必能得到6174...
转载 2017-10-06 19:23:00
149阅读
2评论
文章目录简介单位制观测绘图 简介黑洞图像大家都知道,毕竟前几年刚发布的时候曾火遍全网,甚至都做成表情包了。问题在于,凭什么认为这就是黑洞的照片,而不是一个甜甜圈啥的给整模糊了得到的呢?有什么理论依据吗?单位制利用einsteinpy模块中的Shadow类,可以实现黑洞吸积盘的发射强度,换言之,用理论模拟一下黑洞的照片应该是什么样子的。22年5月份发布的是人马座A*的照片,这个"黑洞"的质量为kg
数字黑洞数字黑洞,又称指的是某种运算,这种运算一般限定从某些整数出发,反复迭代后结果必然落入一个点或若干点的情况叫数字黑洞黑洞原是天文学中的概念,表示这样一种天体:它的引力场是如此之强,就连光也不能逃脱出来。黑洞数又称陷阱数,类具有奇特转换特性,任何数字不全相同的整数,经有限重排求差操作,总会得某或些数,这些数即黑洞数重排求差操作即把组成该数数字重排得大数减去重排得小数。卡普雷卡尔黑洞(重排求差
朝看晨曦,暮浴夕阳,春来赏花,秋望水长。一、黑洞数含义        任何一个数字不全相同整数,经有限“重排求差”操作,总会得某一个或一些数,这些数即为黑洞数。“重排求差”操作即把组成该数的数字重排后得到的最大数减去重排后得到的最小数。--摘自百度百科关键字:有限操作、固定数、最大数减去最小数 二、思路   &nbsp
转载 6月前
107阅读
# Python数字黑洞实现指南 数字黑洞是一个有趣的数学现象,通常在数字运算中出现。我们来了解如何用Python实现这个概念。在本指南中,我将为你划分出步骤,并提供必要的代码示例和注释,帮助你轻松实现。让我们先看看整体流程。 ## 总体流程 | 步骤 | 描述 | |------|-----------------------------| |
原创 2月前
14阅读
偶尔看到一个关于数字黑洞的东西,正好可以练习迭代和函数的使用,所以编写里一个小程序,显示4位数字数字黑洞(4位数的数字黑洞6174)摘自百度: 黑洞数又称陷阱数,类具有奇特转换特性整数 任何数字全相同整数,经有限重排求差操作,总会得某或些数,这些数即黑洞数重排求差操作即把组成该数数字重排得大数减去重排得小数 黑洞原是天文学中的概念,表示这样一种天体:它的引力场是如此之强,就连光也不能逃脱出来。
转载 2023-10-20 16:30:47
109阅读
6.1. 问题描述6174数字黑洞是印度数学家卡普雷卡尔于1949年发现的,又称为卡普雷卡尔黑洞,其规则描述如下。        任意取一个4位的整数(4个数字不能完全相同),把4个数字由大到小排列成一个大的数,又由小到大排列成一个小的数,再把两数相减得到一个差值。之后对这个差值重复前面的变换步骤,经过若干次重复就会得到6174。例如,对整数8848按规则进
题目描述给定任一个各位数字不完全相同的4位正整数,如果我们先把4个数字按非递增排序,再按非递减排序,然后用第1个数字减第2个数字,将得到  一个新的数字。一直重复这样做,我们很快会停在有“数字黑洞”之称的6174,这个神奇的数字也叫Kaprekar常数。    例如,我们从6767开始,将得到    7766 - 6677&nb
原创 2018-04-12 19:32:47
627阅读
1点赞
package 算法;/*任意一个5位数,比如:34256,把它的各位数字打乱,重新排列,可以得到一个最大的数:65432,一个最小的数23456。求这两个数字的差,得:41976,把这个数字再次重复上述过程(如果不足5位,则前边补0)。如此往复,数字会落入某个循环圈(称为数字黑洞)。比如,刚才的数字会落入:[82962, 75933, 63954, 61974] 这个循环圈。请编写程序,找到5位数所有可能的循环圈,并输出,每个循环圈占1行。其中5位数全都相同则循环圈为 [0],这个可以不考虑。循环圈的输出格式仿照:[82962, 75933, 63954, 61974]其中数字的先后顺序可以
转载 2013-03-31 19:07:00
131阅读
2评论
# 如何在Python中实现数字黑洞 数字黑洞是一个有趣的数学问题,它通常涉及到数字的变换,直到所有数字归结为零。在本文中,我们将逐步实现一个数字黑洞的功能,帮助你逐步理解和实现这一过程。 ## 实现步骤概述 下面是实现数字黑洞的主要步骤: | 步骤 | 描述 | |------|------| | 1 | 输入一个正整数 | | 2 | 计算该数的数字之和 | | 3
原创 16小时前
2阅读
1.问题描述2.问题分析3.算法设计4.比较三个数的大小并将其重组5.寻找“黑洞数”6.完整的程序1.问题描述编程求三位数中的“黑洞数”。黑洞数又称陷阱数,是指任何一个数字不全相同的整数,在经过有限次“重排求差”操作后,总会得到某一个或一些数,这些数即为黑洞数。“重排求差”操作是将组成一个数的各位数字重排,将得到的最大数减去最小数。例如,207的“重排求差”操作序列是:720-027=693,96
题目描述:给定任一个各位数字不完全相同的四位正整数,如果先把四个数字按非递增排序,再按非递减排序,然后用第一个数字减第二个数字
原创 2019-08-29 08:44:56
188阅读
  • 1
  • 2
  • 3
  • 4
  • 5