提到卡尔曼,不得不说一个故事:       片绿油油的草地上有一条曲折的小径,通向一棵大树.一个要求被提出:从起点沿着小径走到树下.     “很简单.” A说,于是他丝毫不差地沿着小径走到了树下.      现在,难度被增加了:蒙上眼。    &nbs            
                
         
            
            
            
            在这篇博文中,我们将深入探讨如何使用 Python 来实现卡尔曼增益公式。卡尔曼滤波是一种用于估计不确定系统状态的算法,其核心之一就是计算卡尔曼增益。以下是我们解决这个问题的详细记录,包括环境准备、分步指南、配置详解、验证测试、优化技巧和排错指南。
## 环境准备
在实现卡尔曼增益公式之前,我们需要准备好开发环境。确保安装了 Python 和 NumPy 库,这些是实现卡尔曼滤波所需的前置依赖            
                
         
            
            
            
            最优控制,卡尔曼滤波器 ,算法实现步骤:获取当前时刻的仪器"测量值" 。获取上一时刻的 "预测量值" 和 "误差",计算得到当前的最优量值。再预测下一刻的测量值。  公式:首先,我们先要引入一个离散控制过程的系统。该系统可用一个线性随机微分方程来描述:再加上系统的测量值:公式中:(对于单测量系统,,a、b、h为参数。如果对于多测量系统,a、b、h为矩阵参数)x(k)是            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-04-24 14:47:33
                            
                                67阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            一、前言 卡尔曼滤波器是一种最优线性状态估计方法(等价于“在最小均方误差准则下的最佳线性滤波器”),所谓状态估计就是通过数学方法寻求与观测数据最佳拟合的状态向量。 在移动机器人导航方面,卡尔曼滤波是最常用的状态估计方法。直观上来讲,卡尔曼滤波器在这里起了数据融合的作用,只需要输入当前的测量值(多个传感器数据)和上一个周期的估计值就能估计当前的状态,这个估计出来的当前状态综合考量了传感器数据(即所            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-08-01 19:24:21
                            
                                438阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            卡尔曼滤波(Karman Filter)卡尔曼滤波器是什么?对于卡尔曼滤波器,实际上用滤波器来描述卡尔曼滤波器算法其实并不准确。卡尔曼滤波器最好地叫法是最优化递归数字处理算法(Optimal Recursive Data Processing Algorithm),本质上更加像一个观测器。卡尔曼滤波器的作用?卡尔曼滤波器是用来处理我们生活中的不确定性的算法。我们生活中充满了不确定性,无论是测量的数            
                
         
            
            
            
            学习参考:卡尔曼滤波器的原理以及在matlab中的实现Opencv实现Kalman滤波器opencv中的KF源码分析Opencv-kalman-filter-mouse-tracking理解:       假设:一个小车距离左侧某一物体k时刻的真实位置状态       ,而位置状态观测值为        ,则小车的线性动态系统可表示为:    位置状态的系统预测值:        位置状态的观测值            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-08-28 16:25:46
                            
                                106阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            最近看卡尔曼滤波,网上广为流传着几篇的科普文章,但是都夹杂着一堆复杂的公式,看的我如坠云雾里。我希望能看到一篇没有复杂数学公式的文章,却一直没找到。于是我想写一篇,讲讲自己对卡尔曼滤波的浅显理解。我觉得卡尔曼滤波算法本质上是一个递推反馈算法。它分两部分:时间更新方程和测量状态更新方程。其中,前者负责递推,后者负责反馈(将先验估计和新的测量变量结合,以构造改进后的后验估计)。时间更新方程可视为预估方            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-05-20 16:31:04
                            
                                29阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            1. 最优状态估计情景1:假设一个一个比赛中,不同队伍的自动驾驶汽车使用 GPS 定位,在 100 种不同的地形上各行驶 1 公里。每次都尽可能停在终点。然后计算每只队伍的平均最终位置。第一组输了:因为虽然方差小,但是偏差大。第二组输了:因为偏差小,但是方差大第三组赢了:偏差和方差都小不能仅仅依靠 GPS 数据,因为它可能有噪声。目的是:0 偏差 + 最小的方差可以使用 卡尔曼滤波器。输入是 油门            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-01-09 09:50:26
                            
                                44阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            卡尔曼滤波是最好的线性滤波,但是需要推导的公式教多,也很细,这里推荐一个B站博主视频讲解的关于卡尔曼滤波,讲的很好,很细,适合小白学习,链接地址为:添加链接描述。如果完全没接触过卡尔曼滤波的,建议从第一集开始学习。 下面是我跟着这位博主学习后,再加上其他大神写的代码,融入我自己的理解,对代码进行修改后的版本,每一个部分都有详细的注释,更加的通俗易懂,希望能帮助到需要快速上手卡尔曼滤波的学习者。卡尔            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-09-18 05:12:15
                            
                                157阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            卡尔曼滤波  滤波的方法有很多种,针对不同的情况选用的最优滤波方法也是不同的。卡尔曼滤波的特点就是采用递归方法解决线性滤波问题,只需要知道当前的测量值和上一时刻的最优值,就能对此刻进行最优值计算,计算量小,不需要大量储存空间,适合性能不太强的单片机处理。二阶卡尔曼滤波更加可靠,但计算量较大,通常使用的是一阶。分享一个正在研究的文档https://pan.baidu.com/s/11NCpqgciV            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-09-30 07:58:16
                            
                                152阅读
                            
                                                                             
                 
                
                             
         
            
            
            
            01 简介:Why MPU6050?MPU 6050等IMU传感器用于自平衡机器人,无人机,智能手机等。IMU传感器帮助我们在三维空间中获得连接到传感器的物体的位置。这些值通常是角度,以帮助我们确定其位置。它们用于检测智能手机的方向,或者用于Fitbit等可穿戴设备,它使用IMU传感器跟踪运动。MPU6050 它是全球首例整合性 6 轴运动处理组件,俗称的六轴陀螺仪(x y z 三轴的倾斜角度和三            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-10-24 07:30:32
                            
                                213阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            此文章需要有卡尔曼滤波基础知识的储备(因为文中并没有对具体公式推导作详细的说明)卡尔曼滤波能做什么呢?这是一个很好的问题,其实呢,卡尔曼滤波能做的事情很多,这里呢,我参考了多位博主的文章从而得出结论,这里就以我学习的经验来向各位朋友分享我的收获与心得,并且呢,这里我将使用卡尔曼滤波作用在超声波模块测距实例上,对超声波模块测量得到的距离作未滤波与滤波后波形的这样一个对比。废话不多说,咱们先直接上波形            
                
         
            
            
            
            文章目录前言1、一些前置知识递归算法(Recursive Processing数据融合(Data fusion)相关数学基础状态空间方程与观测器2、状态空间方程3、估计模型与测量估计的数据融合4、卡尔曼增益的推导(Kalman gain)5、先验估计协方差的求解6、后验估计协方差的化简7、标准卡尔曼滤波算法实现及验证一维标准卡尔曼算法实现及验证二维标准卡尔曼算法实现及验证 前言回到本文主题:卡尔            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-09-01 09:11:44
                            
                                69阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            今天将主要记录一下自己对机器人运动状态估计的学习,粒子滤波与卡尔曼滤波的讲述顺序稍做调整,主要是考虑到学习理解的难度,应该循序渐进。 那么主要讲述纲要如下: 1、卡尔曼滤波(kalman Filter,KF)原理与公式 2、经典卡尔曼滤波应用与简易代码实现 3、扩展卡尔曼滤波(Extended kalman Filter EKF)原理 4、无迹卡尔曼滤波(Unscented Kalman Filt            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-10-11 19:07:12
                            
                                258阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            卡尔曼滤波算法是一种经典的状态估计算法,它广泛应用于控制领域和信号处理领域。在电动汽车领域中,卡尔曼滤波算法也被广泛应用于电池管理系统中的电池状态估计。其中,电池的状态包括电池的剩余容量(SOC)、内阻、温度等。并且卡尔曼滤波法也是一种比较精确的SOC估计方法,它通过测量电池的电流和电压来估计电池的SOC。该方法利用卡尔曼滤波算法对电池的状态进行估计,从而得到更准确的SOC估计值。接下来我们将介绍            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-02-23 07:09:51
                            
                                42阅读
                            
                                                                             
                 
                
                             
         
            
            
            
            文章目录卡尔曼滤波一、滤波效果展示二、简介三、组成1. 预测状态方程(1)目的:(2)方程:(3)备注2. 预测协方差方程(1)目的(2)方程(3)备注3. 卡尔曼增益方程(1)目的(2)方程(3)备注4. 跟新最优值方程(卡尔曼滤波的输出)(1)目的(2)方程(3)备注5. 更新协方差方程(1)目的(2)方程(3)备注四、C 程序代码实现1. 参数列表2. 代码实现(一维数据滤波)五、发送波形            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-08-30 21:15:12
                            
                                296阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            一、引言本文以rssi(接收信号强度)滤波为背景,结合卡尔曼的五个公式,设计 rssi 一维卡尔曼滤波器,用MATLAB语言实现一维卡尔曼滤波器,并附上代码和滤波结果图;本文工分为以下几个部分:1、引言2、模型的系统方程和状态方程3、卡尔曼滤波过程及五个基本公式4、公式中每个参数详细注释5、结合rssi滤波实例设计滤波器6、MATLAB实现滤波器 二、模型的系统方程和状态方程系统的状态方            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-05-03 07:29:10
                            
                                196阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            动态系统中有一个共同的基本特征:系统的状态。而通常情况下,状态又是不可测量的,而是用简介的方式测量一组观测值来反映状态对外部环境的影响。举下面以例子我想会有助于理解已知的观测值和待求得状态值之间的关系:一只猴子在经过一定程度的训练之后,能够在固定的L*M的区域中跟随人的口令将手指尖移至口令要求的点,与此同时,在猴子脑部运动皮层连接上一个电极来记录神经元峰电位数,猴子的手指尖在跟随着人的指令在固定区            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-04-24 14:10:52
                            
                                51阅读
                            
                                                                             
                 
                
                             
         
            
            
            
            简单来说,卡尔曼滤波器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法)”。对于解决很大部分的问题,他是最优,效率最高甚至是最有用的。他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。近来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-12-22 20:11:06
                            
                                57阅读
                            
                                                                             
                 
                
                             
         
            
            
            
            https://zhuanlan.zhihu.com/p/77327349 先回顾下在这篇回答中《如何通俗并尽可能详细解释卡尔曼滤波?》提高的对卡尔曼滤波的直观理解。 直观理解 首先卡尔曼滤波要解决的问题是什么?我以我军发射一枚导弹攻击敌方某固定位置目标为例(搞科技的总要点情怀,老是讲啥小车运动,温 ...            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2021-10-30 12:10:00
                            
                                213阅读
                            
                                                                                    
                                2评论