前言:一、傅里叶变换的机理一个能量无限的正弦信号和源信号乘积并求和得到某个频率下的系数,随着频率的增加,正弦信号改变,再次求得系数,依次构成了频谱傅里叶级数及傅里叶变换 傅里叶级数及傅里叶变换 https://wenku.baidu.com/view/b167af4acf84b9d528ea7a85.html(关于信号调制)频率随时间变化-非平稳信号平稳信号:瞬时幅度和瞬时
1.复信号的数学表达式  大家都知道,复数是由实数与虚数构成。同理,复信号也可以有一个实信号和一个虚信号构成。数学表达式可以表示为:这里我们还可以回想起经典的欧拉公式:这个公式将复变函数,三角函数以及指数函数巧妙的结合在了一起。如果定义一个复平面,其横坐标就是实数,纵坐标就是虚数,诸如此类的函数我们叫它复变函数,并且它实际上是绕原点旋转的圆,如下图: 其中θ=wt=2
最近项目中有需求要绘制分时,当时也想过使用开源的,在网上找了一大推资料,但是没有一个是合适的,需求永远是不一样的。然后就开始想自己绘制,当然一开始也是没有头绪,,慢慢的看看别人的思路,就开始自己去绘制。package com.wei.demo.view; import android.content.Context; import android.graphics.Canvas; import
# 的应用与实现:Python的分析工具 在信号处理和时间序列分析中,是一个非常重要的工具。它能够帮助我们分析信号在时间和频率上的分布,提供更丰富的信息。那么,如何使用Python绘制呢?在本文中,我们将介绍的基本概念,并给出一个简单的实现示例。 ## 什么是是将信号的时间信息与频率信息结合在一起的图形表示。常用的有短时傅里叶变换(STFT)、小
原创 8月前
262阅读
# Android MP3 的生成与可视化 在音频处理领域,是一种重要的工具,它可以直观地表示音频信号在时间与频率上的变化。本文将介绍如何在Android应用中生成MP3音频的,并提供相应的代码示例。 ## 什么是(Spectrogram)是一种将时间与频率信息结合在一起的图像形式。在图中,横轴表示时间,纵轴表示频率,而颜色或亮度通常表示在相应时间频率上
原创 2024-09-16 06:00:45
59阅读
点解 :时域 频域    频谱的物理意义: 频域 是 时域的倒数。 横坐标是频率,纵坐标是振幅, 频谱可以用来表示声音频率与能量的关系,就像一个声音一般由各种不同频率声音信号组成,每个频率的信号幅值都不一样,就形成了频谱,一个频谱就可以表示一个复合信号(例如声音)。 ********************************
开源音频编辑器Audacity 2.4.0发布了,它进行了许多更改,包括新的多视图模式,该模式允许您同时查看单个轨道的波形和频谱。尽管此特定更改被描述为高级功能,但它是一个选项,它将使编辑人员更容易进行精确的剪切和拼接,尤其是对诸如播客之类的声音内容。新的时间工具栏也可用,可以调整大小(变小或变大),并且可以删除,重新停靠或自由浮动。Audacity 2.4.0更新详情1、多视图我们添加了一个新
-、绘制原理 1.需要用到的小波工具箱中的三个函数 COEFS = cwt(S,SCALES,‘wname’) 说明:该函数能实现连续小波变换,其中S为输入信号,SCALES为尺度,wname为小波名称。 FREQ = centfrq(‘wname’) 说明:该函数能求出以wname命名的母小波的中心频率。 F = scal2frq(A,‘wname’,DELTA) 说明:该函数能将尺度转换为实际
# Python中的实现 ## 1. 概述 在Python中,实现时可以使用Matplotlib库和Numpy库。是一种将时间和频率信息结合起来的可视化方式,通常用于分析信号的频域特征。 本文将介绍如何使用Python实现时,并提供详细的代码示例和解释。 ## 2. 实现步骤 下面是实现时的整体流程: | 步骤 | 描述 | | --- | --- | | 1
原创 2023-09-27 04:42:02
1751阅读
频域图像增强基础知识:图像变换技术:将原定义在图像空间的图像以某种形式转换到另外一些空间,并利用在这些空间的特有性质方便地进行一定的加工,最后再转换回图像空间以得到所需的效果。变换是双向的,或者说需要双向的变换。在图像处理中,一般将从图像空间向其他空间的变换称为正变换,而将从其他空间向图像空间的变换称为反变换或逆变换 。时域分析只能反映信号的幅值随时间的变化情况,除单频率分量的简谐波外,很难明确揭
在传统的信号处理中,人们分析和处理信号的最常用也是最直接的方法是傅里叶变换。傅里叶变换及其反变换构建起信号时域与频域之间变换的桥梁,是信号时域与频域分析的基础。但是以傅里叶变换为基础的经典分析方法,只是一种信号的整体变换,要么完全在时域进行,要么完全在域进行,因而不具备时间和频率的定位功能,显然这对于平稳信号分析还是足够的。而对于非平稳信号而言,由于其频谱随时间有较大的变化,要求分析方法能够准确
关注“心仪脑”查看更多脑科学知识的分享。短时傅里叶变换(STFT)是脑电分析中一种基于滑动窗口法的简单常用的分析方法。它假设非平稳的信号可以被分成一系列短数据段的集合,每个数据段都可以看作是平稳的,频谱是固定的。在每一个数据段上进行常规的频谱估计方法,然后将所有数据段的频谱估计值堆叠在一起,形成在联合时频域上的一个频谱功率分布。这些步骤包括:选择一个有限长度的窗口函数;从信号的起始点开始,将
Python 小波实现流程 ======================== 作为一名经验丰富的开发者,我将教会你如何实现“Python 小波”。下面是整个实现流程的步骤表格: | 步骤 | 描述 | | --- | --- | | 步骤一 | 安装必要的库 | | 步骤二 | 导入所需的库 | | 步骤三 | 加载数据 | | 步骤四 | 对数据进行小波变换 | | 步骤五 |
原创 2024-02-04 06:00:38
206阅读
# 使用MFCC绘制的指南 在这篇文章中,我们将探讨如何使用MFCC(梅尔频率倒谱系数)绘制音频信号的。MFCC是语音处理和音频分析中常用的特征,适用于许多机器学习和信号处理任务。以下是整个过程的说明和必要的代码示例。 ## 流程步骤 我们将整个流程分为几个步骤,见下表: | 步骤 | 描述
原创 7月前
75阅读
在前天的文章『用python制作动态图表看全球疫情变化趋势』中,由于篇幅原因,在数据处理与数据可视化相关内容上我们只是简单带过,那么我将以python小小白的角度去还原如何处理数据与数据可视化。本文为第二篇:pyecharts绘制时间轮播。时间线轮播多 我们依旧以python小小白的角度去解析如何用pyecharts去制作时间线轮播多。其实在之前我也并没有使用过这个功能,仅有一点的类似经验是
文章目录举个例子1. 载入数据(Loading data)2. Visualizing the artifacts3. Filtering to remove slow drifts4. Fitting and plotting the ICA solution总结 举个例子独立成分分析(ICA)的一个应用例子是利用ICA消除伪影(artifacts)。伪影是医学影像领域中的专业术语。伪影可以定
频域特征提取可以在频域提取出待测样本数据多个统计特征值,如小波奇异熵等。旋转机械故障的振动大多数信号是非平稳信号[23]。减速器关键部件的工作环境通常是复杂且多变的,因此加速度传感器测得的振动信号通常具有非平稳、随时间变化的特点。时域或频域中的传统统计特性通常描述了整个减速器关键部件的运行状态,无法观察非平稳振动信号的频率随时间变化的信息,不能局部分析振动信号,即时间频率分辨率不高。而借助
  在数据分析和可视化中最有用的 50 个 Matplotlib 图表。 这些图表列表允许使用 python 的 matplotlib 和 seaborn 库选择要显示的可视化对象。  这里开始第四部分内容:分布(Distribution)准备工作在代码运行前先引入下面的设置内容。 当然,单独的图表,可以重新设置显示要素。# !pip install brewer2mpl import numpy
很多通信工程学生,几乎每天接触变换,但通常不知道为什么要变换、变换之间的关系,变换产生的代表什么意义,基于这些问题,我尝试做下梳理:1、为什么要进行时变换?(1)在频率域能看到很多时域无法直接看到的现象,比如频率分布;  对于确定的信号其时域表示是确定的,我们可以通过傅里叶变换得到其确定的频谱分布;  对于随机信号不能用确定的时间函数表示,我们要想对其探索,只能选取合适的变换方式,
作者:张宋扬、彭厚文、傅建龙、卢亦娟、罗杰波当时间的维度从一维走向二维,时序上的建模方式也需要相应的改变。本文提出了多尺度二维的概念和多尺度二维时域邻近网络(MS-2D-TAN)用于解决视频时间定位的问题。本文拓展自 AAAI 2020 [1],并将单尺度的二维时间建模拓展成了一个多尺度的版本。新模型考虑了多种不同时间尺度下视频片段之间的关系,速度更快的同时精度也更高。本文在基于文本的视频
  • 1
  • 2
  • 3
  • 4
  • 5