本文利用通俗易懂的语言对生成对抗网络(GAN)进行介绍,包括技术背景、原理、应用场景、未来发展趋势等。一、技术背景生成对抗网络(Generative Adversarial Networks,GAN)是一种生成模型,由Goodfellow等人在2014年提出。相比于其他生成模型,GAN具有更高的生成能力和更好的生成效果,因此受到了广泛的关注和研究。GAN的基本思想是通过让两个神经网络相互对抗,从而
文章目录一、PyTorch和神经网络1.1PyTorch入门1.2初试PyTorch和神经网络1.3改良方法1.4CUDA基础知识二、GAN初步2.1GAN的概念2.2生成1010格式规律2.3生成手写数字2.4生成人脸图像三、卷积GAN和条件式GAN3.1卷积3.2条件式3.3结语总结 之前就看过塔里克的python神经网络编程入门的神经网络,现在又买到了塔里克的新书PyTorch生成对抗网络
PyTorch的神经风格迁移一章中,我们学习了一种通过模仿艺术图像的风格来生成新数据的方法。在本章中,我们将介绍另一种生成新数据的方法,称为生成对抗网络(GANs)。GAN是一个通过学习数据分布来生成新数据的框架。GAN框架由generator和discriminator两个神经网络组成,如下图所示: 在图像生成方面,当给定噪声作为输入时,生成生成假数据,判别器将真实图像与假图像进行分类。在训
一、GAN的基本概念GAN是由Ian Goodfellow于2014年首次提出,学习GAN的初衷,即生成不存在于真实世界的数据。类似于AI具有创造力和想象力。GAN有两大护法G和D:G是generator,生成器: 负责凭空捏造数据出来D是discriminator,判别器: 负责判断数据是不是真数据这样可以简单看作是两个网络的博弈过程。在原始的GAN论文里面,G和D都是两个多层感知机网络。GAN
最近一直在看GAN,我一直认为只有把博客看了一遍,然后再敲一遍。这样才会有深刻的感悟。 GAN(生成对抗网络)(GAN, Generative Adversarial Networks )是一种深度学习模型,分布在无监督学习上。分成两个模块:生成模型(Generative Model)和判别模型(Discriminative Model)。简单来说就是:两个人比赛,看是&nb
深度学习Pytorch-生成对抗网络GAN0. 往期内容1. 生成对抗网络GAN定义2. 如何训练GAN?3. 训练DCGAN实现人脸生成4. 完整代码 1. 生成对抗网络GAN定义2. 如何训练GAN?不是数值上的逼近,而是分布上的逼近。3. 训练DCGAN实现人脸生成4. 完整代码gan_demo.py# -*- coding: utf-8 -*- """ # @file name : g
生成对抗网络的基本思想:生成对抗网络中有两个模型Generator和Discriminator,生成模型可以比作counterfeiters,判别模型可以比做是police,生成模型通过自身的优化产生越来越像真钞的假币,而判别模型也通过对自身不断的优化提高自己判别假币的能力,两者相互对抗,直到仿品不能从真品中分辨出来。生成模型:比如一个图片的生成输入是高维的vector,输出为图片判别模型:输入为
# 生成对抗网络(GAN)简介及其在PyTorch中的应用 ## 引言 生成对抗网络(Generative Adversarial Networks,简称GAN)是一种用于生成新的数据样本的深度学习模型。GAN由两个神经网络组成:生成器(Generator)和判别器(Discriminator)。生成器负责生成新的样本,而判别器负责对生成的样本进行分类,判断其是否与真实样本相似。两个网络相互对
原创 2023-08-30 10:18:39
63阅读
2014年,Ian Goodfellow 和他在蒙特利尔大学的同事们发表了一篇令人惊叹的论文,向世界介绍了 GANs),即生成对抗网络。通过计算图和博弈论的创新组合,他们表明,如果给予足够的建模能力,两个互相攻击的模型将能够通过普通的反向传播进行协同训练。模型扮演着两种截然不同的角色。给定一些真实的数据集 R,G 是生成器,试图生成看起来像真实数据的假数据,而 D 是鉴别器,从真实数据集或 G
深度学习在图像识别问题的应用上发展较早,可以说已经很成熟,从这类问题入行的确是一个非常好的选择。但是个人总感觉还没摸到真正人工智能的前沿,比如计算机视觉领域中的一些应用:图像转换、增强现实、图像合成、风格迁移、图像修复等,具体比如把照片转成某种油画风格,还有某短视频软件把人脸慢慢转变到老的样子,在感叹的同时不免会产生探究其原理的兴趣。在研究PyTorch框架的过程中,找到了这一类应用的基础模型:生
GANsGANs的全称叫做生成对抗网络,根据这个名字,你就可以猜测这个网络是由两部分组成的,第一部分是生成,第二部分是对抗。那么你已经基本猜对了,这个网络第一部分是生成网络,第二部分对抗模型严格来讲是一个判别器,简单来说呢,就是让两个网络相互竞争,生成网络生成假的数据,对抗网络通过判别器去判别真伪,最后希望生成生成的数据能够以假乱真。可以用这个图来简单的看一看这两个过程。下面我们就
最近看了一些GAN的资料,把自己易混淆的内容做一个总结生成式模型        我们以往通常接触到的深度学习模型一般都是些判别模型,即通过训练样本训练模型,然后利用模型对新样本进行判别或预测。判别模型体现了深度学习的学习能力,然而,人工智能的强大,不应只有从已知中学习,还应该有创造能力,才就真正有趣。而生成式模型所体现的就是深度学习的创造能力。与判别式模型的
# coding=utf-8 import torch.autograd import torch.nn as nn from torch.autograd import Variable from torchvision import transforms from torchvision import datasets from torchvision.utils import save_im
GAN的概念对抗训练如何训练生成器:如果图像通过了鉴别器的检验,我们奖励生成器;如果伪造的图像被识破,我们惩罚生成器。随着训练的进展,鉴别器的表现越来越好,生成器也必须不断进步,才能骗过更好的鉴别器。最终,生成器也变得非常出色,可以生成足以以假乱真的图像。这种架构叫做生成对抗网络(Generative Adversarial Network, GAN)。它利用竞争来驱动进步,并且,我们不需要定义具
对抗生成网络主要的原理,主要是使用生成生成网络,判别器进行判别生成器损失值:  判别器判别生成图片为真的BCE损失值 判别器损失值   判别真实图片为真和判别生成图片为假的BCE损失值 第一步: 使用argparse构造cmd输入的参数函数, 包含batch_size, lr学习率 ,latent_dim表示噪音生成的维度 第二步: 构造mnist数据集的
# 构建生成对抗网络的实现流程 生成对抗网络(Generative Adversarial Networks, GAN)是一种强大的深度学习模型,用于生成逼真的数据样本。在本文中,我将教给你如何使用PyTorch构建一个简单的生成对抗网络。 ## 步骤概览 下面是整个实现过程的步骤概览: | 步骤 | 描述 | |------|------| | 步骤 1 | 导入必要的库 | | 步骤
原创 2023-07-22 16:16:32
165阅读
要阅读带插图的教程,请前往 http://studyai.com/pytorch-1.4/beginner/dcgan_faces_tutorial.html本教程将通过一个示例介绍DCGANs。我们将训练一个生成对抗网络(generative adversarial network, GAN), 在给它展示许多名流的照片之后,产生新的名人。这里的大部分代码都来自 pytorch/examples
史上最简单、实际、通俗易懂的PyTorch实战系列教程!(新手友好、小白请进、建议收藏)GAN对抗生成网络一、GAN对抗生成网络通俗介绍 通俗来说,对抗生成网络就是你给计算机一些地球人的人脸数据去训练,然后它就可以生成一些新的地球人的人脸图片。它也可以对图像进行超分辨率重构,把模糊的图片变清晰,你只需要给它模糊图片的数据和清晰图片的数据,在它遇到新的需要处理的模糊的图片时,它就可以生成清晰的图片。
最近在学习深度学习编程,采用的深度学习框架是pytorch,看的书主要是陈云编著的《深度学习框架PyTorch入门与实践》、廖星宇编著的《深度学习入门之PyTorch》、肖志清的《神经网络PyTorch实践》,都是入门的学习材料,适合初学者。通过近1个多月的学习,基本算是入门了,后面将深度学习与实践。这里分享一个《神经网络PyTorch实践》中对抗生成网络的例子。它是用对抗生成网络的方法,训练
原创 2022-08-21 10:13:00
143阅读
SGAN  SSGAN是半监督学习生成对抗网络 (SGAN(ssgan)Semi-Supervised Learning with Generative Adversarial Networks ),初衷是利用GAN生成生成的样本来改进和提高图像分类任务的性能。在实际的应用中有大量的数据是不带标签的,带标签的数据只占一小部分;充分的利用不标签的“无监督数据”可以提高分类模型泛化和性能。 事实上,
转载 2023-09-27 13:28:50
674阅读
  • 1
  • 2
  • 3
  • 4
  • 5