# 导入包
import collections
import math
import random
import time
import os
import numpy as np
import torch
from torch import nn
import sys
import torch.utils.data as Data1.处理数据集# 打开并读取数据集ptb
dataset_pat
转载
2023-11-07 01:16:11
84阅读
架构:skip-gram(慢、对罕见字有利)vs CBOW(快)· 训练算法:分层softmax(对罕见字有利)vs 负采样(对常见词和低纬向量有利) 负例采样准确率提高,速度会慢,不使用negative sampling的word2vec本身非常快,但是准确性并不高·&n
转载
2024-08-11 22:55:46
75阅读
nlp之 word2vec 训练细节引言单词组合高频词抽样抽样率 也即是删除概率负采样如何选择negative words参考文献 引言举个栗子,我们拥有10000个单词的词汇表,我们如果想嵌入300维的词向量,那么我们的输入-隐层权重矩阵和隐层-输出层的权重矩阵都会有 10000 x 300 = 300万个权重,在如此庞大的神经网络中进行梯度下降是相当慢的。更糟糕的是,你需要大量的训练数据来调
转载
2024-04-19 05:58:33
70阅读
在《(一)理解word2vec:原理篇》中,我已经介绍了word2vec的相关应用和原理。在这篇博客中,我主要介绍word2vec的实践。本篇博客的基础实践代码仍然参考刘新建老师的博客,在他文章的基础上,我又扩展了一些功能。我用的实现word2vec的包是gensim(官方github)。gensim是一款开源的第三方Python工具包,用于从原始的非结构化的文本中,无监督地学习到文本隐层的主题向
转载
2024-05-28 19:44:21
104阅读
系列所有帖子 自己动手写word2vec (一):主要概念和流程 自己动手写word2vec (二):统计词频 自己动手写word2vec (三):构建Huffman树 自己动手写word2vec (四):CBOW和skip-gram模型 CBOW和skip-gram应该可以说算是word2vec的核心概念之一了。这一节我们就来仔细的阐述这两个模型。其实这两个模型有很多的相通之处,所以这里就以阐
转载
2024-07-03 14:07:22
51阅读
目录 前言
CBOW模型与Skip-gram模型
基于Hierarchical Softmax框架的CBOW模型
基于Negative Sampling框架的CBOW模型
负采样算法
结巴分词
word2vec
前言 word2vec当前主流实现有4种:基于Negative Sampling框架和基于Hierarchical Softmax框架的CBOW模型
训练自己的Word2vec模型为了能够训练自己的Word2vec模型,你需要有一些数据,这里用Lee Evaluation 语料库来进行训练。这个语料库足够小(一共300条数据),而且可以完全加载进内存当中,但是!在实际的应用中你往往不能够直接加载很大的语料库进内存,所以首先来实现一个迭代器来逐行的读取文件:from gensim.test.utils import datapath
from g
转载
2024-05-04 10:07:44
152阅读
嗨,好久不见啊!今天我们来完成一个word2vec模型训练,学习笔记有挺多人写的,不瞒您说,小白也是看别人的博客学习的。所以这次,小白就直接上手实例啦,一起嘛? 首先介绍一下模型参数然后去网上找一个喜欢的文学作品,把它的txt下载下来。啊啊,其实你可以找几个拼在一起。我先是下载了一个《小王子》后来发现太小了就又下载了《时生》(顺便安利一下东野圭吾的《时生》),以utf-8编码的形式保存成xwz_s
转载
2024-01-28 15:31:11
152阅读
深入浅出理解word2vec模型 (理论与源码分析)文章源码下载地址:点我下载http://inf.zhihang.info/resources/pay/7692.html对于算法工程师来说, Word2Vec 可以说是大家耳熟能详的一种词向量计算算法,Goole在2013年一开源该算法就引起了工业界与学术界的广泛关注。一般来说,word2vec 是基于序列中隔得越近的word越相似的基础假设来训
转载
2024-05-12 11:41:55
65阅读
文章目录预训练word2vec1 - 跳元模型嵌入层定义前向传播2 - 训练二元交叉熵损失初始化模型参数定义训练阶段代码3 - 应用词嵌入4 - 小结 预训练word2vec我们将实现跳元语法模型,然后,我们将在PTB数据集上使用负采样预训练word2vec。首先,让我们通过调用d2l.load_data_ptb函数来获得该数据集的数据迭代器和词表import math
import torch
转载
2024-06-30 10:41:12
25阅读
前言自从Mikolov在他2013年的论文“Efficient Estimation of Word Representation in Vector Space”提出词向量的概念后,NLP领域仿佛一下子进入了embedding的世界,Sentence2Vec、Doc2Vec、Everything2Vec。词向量基于语言模型的假设——“一个词的含义可以由它的上下文推断得出“,提出了词的Distri
转载
2024-05-30 11:12:55
69阅读
Word2Vec的pytorch实现(Skip-gram)写在前面:正文代码部分读取数据构建DataSet构建Loader构建训练模型模型训练测试词向量 写在前面:本篇文章是我个人的学习记录,仅包含代码实现和一些个人理解,参考的一些文章我会给出链接。深度学习word2vec笔记之算法篇.Word2VecPyTorch 实现 Word2VecWord2Vec的数学原理详解:链接:https://p
转载
2023-10-16 16:34:07
134阅读
相关链接:1、Word2Vec源码最详细解析(上)2、Word2Vec源码最详细解析(下)Word2Vec源码最详细解析(上)在这一部分中,主要介绍的是Word2Vec源码中的主要数据结构、各个变量的含义与作用,以及所有算法之外的辅助函数,包括如何从训练文件中获取词汇、构建词表、hash表、Haffman树等,为算法实现提供数据准备。而算法部分的代码实现将在《Word2Vec源码最详细解析(下)》
转载
2024-02-11 08:34:15
65阅读
本文摘录整编了一些理论介绍,推导了word2vec中的数学原理;并考察了一些常见的word2vec实现,评测其准确率等性能,最后分析了word2vec原版C代码;针对没有好用的Java实现的现状,移植了原版C程序到Java。时间和水平有限,本文没有就其发展历史展开多谈,只记录了必要的知识点,并着重关注工程实践。虽然我的Java方案速度比原版C程序高出1倍,在算法代码与原版C程序一致的情况下准确率仍
虽然早就对NLP有一丢丢接触,但是最近真正对中文文本进行处理才深深感觉到自然语言处理的难度,主要是机器与人还是有很大差异的,毕竟人和人之间都是有差异的,要不然不会讲最难研究的人嘞~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~不华丽的分割线~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
这里先实现skip-gram,本文也是对于该篇文章的翻译,并添加个人的理解与感悟。整体的流程如下:数据准备 —— 数据获取、清洗、使标准化、分词超参数 —— 学习率、迭代次数、窗口大小、词向量维度生成训练数据 —— 创建字典、为每个词生成one-hot编码、生成word2dic和dic2word的索引建立模型 —— 通过前向传播先对词做编码,计算错误率,通过反向传播和梯度下降不断降低loss推理
虽然早就对NLP有一丢丢接触,但是最近真正对中文文本进行处理才深深感觉到自然语言处理的难度,主要是机器与人还是有很大差异的,毕竟人和人之间都是有差异的,要不然不会讲最难研究的人嘞~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~不华丽的分割线~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
教程1:https://mp.weixin.qq.com/s/dBsfygrVkFxMHE1q-q7HRQ 词向量编码:1、独热码:one-hot code2、word2vec:文本生成词向量模型,该方法提出目的就是解决独热码无法体现词语之间的差异性与相似性、丢失了语序信息;产生的数据高维且稀疏。而词向量主要有以下一些特点1、如果单词量为N,那么可以用一个n维的向量来表示每一个
前言这是 Word2Vec 的 Skip-Gram 模型的代码 (Tensorflow 1.15.0),代码源自,我加了注释。数据集:http://mattmahoney.net/dc/text8.zip导入包 import collections
import math
import os
import random
import zipfile
import numpy as
转载
2024-06-29 07:25:37
113阅读
以谷歌开源google news(bin)为例。下载地址:https://code.google.com/p/word2vec更多模型下载地址:https://github.com/xgli/word2vec-api之前被这个问题困扰了挺长时间,一直找不到有效的方法,可能是我太菜……在网上找资料也只找到了一种把bin转换成txt 文件的方式,但是效率出奇的低,无法想象,本地一运行程序就死机,服务器
转载
2024-07-04 20:04:37
3439阅读