一、什么是胶囊网络1.1普通CNN的缺点:CNN在提取特征时只在乎有没有,不在乎他具体的状态是如何的。上面第一张图片是一个人像,CNN可以正常识别出来;第二张是一个五官错位的图片,CNN仍然将其识别成一张人脸。这是因为CNN是可以识别出人像所具有的具体特征,只要包含这些特征就将其判定为一张人脸。 1.2Hinton自己说过:最大池化层表现的如此优异是一个巨大的错误,是一场灾难。从图中不难
转载
2024-04-18 22:16:06
291阅读
CNNs可以自动从(通常是大规模)数据中学习特征,并把结果向同类型未知数据泛化。
选用卷积的原因:
局部感知:
简单来说,卷积核的大小一般小于输入图像的大小(如果等于则是全连接),因此卷积提取出的特征会更多地关注局部 ——
这很符合日常我们接触到的图像处理。而每个神经元其实没有必要对全局图像进行感知,只需要对局部进行感知,
然后在更高层将局部
转载
2024-03-27 21:09:43
116阅读
!!!入门级选手的博客,请带着做英语短文改错的眼光来看 一、卷积神经网络CNN二、支持向量机SVM三、Adaboost(通过迭代弱分类器而产生最终的强分类器的算法)四、算法优缺点及其发展趋势(1)CNN最大优点是权值共享,减少了计算时间,CNN处理图像可以把原图直接输入网络,特征提取也简单,因为会简化处理,加快处理速度。 缺点:实现相对复杂,网络训练时间长而且由于其泛化性,要对处理的样
转载
2023-10-13 17:27:32
148阅读
tf框架的范围管理scope技术来优化参数设定,最终准确率为0.984这里主要引入较多参数来改进原有的cnn模型:使用激活函数去线性化使用隐藏层即加深层数以解决复杂问题使用学习率调整更新参数的频度使用滑动平均模型来调整模型结果# 导入必要的库
import tensorflow as tf
import os
from tensorflow.examples.tutorials.mnist im
转载
2024-04-14 22:23:34
111阅读
此篇博客主要是讲一些目前较好的网络发展,提出问题,解决了什么问题,有什么优缺点。1、Alexnet网络,本网络是2012年的分类冠军,掀起来深度学习的热潮,Alexnet参数量巨大,由于受限于硬件计算,作者采用了group 卷积,将特征图分别放入不同gpu进行运算,最后融合,但是此网络存在一个问题,不同特征图分别计算然后融合,如此卷积核只与某一部分的特征图进行卷积,这样卷积核获得的特征
转载
2024-04-29 12:52:22
85阅读
一、概述 CNN主要发展过程可由下图所示。(下图来自刘昕博士)《CNN的近期进展与实用技巧》。 本文的目的不止于此,本文将深入理解CNN的四大类应用:图像分类模型,目标检测模型,语义分割模型,语义slam模型:图像分类模型叙述步骤如下:CNN之前模型->leNet->AlexNet->VGG16系列->MSRANet->GoogLeNet->Inception系
转载
2024-03-25 17:37:14
42阅读
目录KNN项目实战——改进约会网站的配对效果1、项目背景2、项目数据3、K-近邻算法的一般流程4、项目步骤及代码实现5、项目结果KNN项目实战——改进约会网站的配对效果1、项目背景: 海伦女士一直使用在线约会网站寻找适合自己的约会对象。尽管约会网站会推荐不同的人选,但她并不是喜欢每一个人。经过一番总结,她
本文主要通过CNN进行花卉的分类,训练结束保存模型,最后通过调用模型,输入花卉的图片通过模型来进行类别的预测。 测试平台:win 10+tensorflow 1.2 数据集中总共有五种花,分别放在五个文件夹下。&n
转载
2024-04-03 15:56:34
91阅读
循环神经网络 (RNN) CNN等传统神经网络的局限在于:将固定大小的向量作为输入(比如一张图片),然后输出一个固定大小的向量(比如不同分类的概率)。不仅如此,CNN还按照固定的计算步骤(比如模型中层的数量)来实现这样的输入输出。这样的神经网络没有持久性:假设你希望对电影中每一帧的事件类型进行分类,传统的神经网络就没有办法使用
CNN 的两个弊端 自从Alex Krizhevsky 等论文 ImageNet Classification with Deep Convolutional Networks 在 NIPS2012 发表开始,CNN 已经成为很多领域十分重要的工具,深度学习已很普遍. 基于 CNN 的方法已经在计算机视觉的诸多任务中取得了卓越的成绩. 但,CNN 是完美的吗?是能选择的最佳方案吗?当然不
转载
2024-05-05 17:40:16
263阅读
一、介绍 NIN网络是由Min Lin等人在2014年提出的一个网络嵌套模型,使用微神经网络替换卷积神经网络中的卷积核。通过微神经网络来抽象感受野内的数据。称这种微神经网络结构为mplconv。这篇论文的创新之处主要体现在两个地方,分别是:使用微神经网络替换传统卷积神经网络的卷积核。使用全局平均池化替代全
转载
2024-03-24 14:52:06
14阅读
AlexNet网络结构:5层卷积,3层全连接。使用了多GPU策略,局部反应归一化,重叠池化方法。 ZFNet网络结构:可视化过程:卷积层输出的特征作为输入,输入到反卷积网络,反卷积网络包括unpooling、relu、deconv三个过程。 VGGNet网络结构:一个卷积层由多个小卷积核构成,降低了训练的数据量。 GoogleNet网络结构:GoogleNet提出了一
转载
2023-10-08 08:53:44
369阅读
卷积神经网络是人工神经网络的一种,已成为当前语音分析和图像识别领域的研究热点。它的权值共享网络结构使之更类似于生物神经网络,降低了网络模型的复杂度,减少了权值的数量。该优点在网络的输入是多维图像时表现的更为明显,使图像可以直接作为网络的输入,避免了传统识别算法中复杂的特征提取和数据重建过程。卷积网络是为识别二维形状而特殊设计的一个多层感知器,这种网络结构对平移、比例缩放、倾斜或者共他形式的变形具有
转载
2024-10-25 12:56:26
84阅读
相关理论可以看这篇文章 Deep Learning using Linear Support Vector Machines,ICML 2013主要使用的是SVM的hinge loss形式的损失函数原始的SVM的损失:(公式图片截取自开头的论文)SVM的hinge loss形式的损失:(公式图片截取自开头的论文)这里解决的是二分类问题,多分类的话和softmax一样,简单说明如下:(公式
转载
2024-03-21 21:37:08
82阅读
目录1. Motivation2. SPPnet2.1 SPP层的原理2.2 SPPnet的区域映射原理3. 总结 论文: Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. 1. MotivationR-CNN模型存在很多缺点和可改进的地方,其中的两个缺点如下:CNN网络后面接的FC层需要
1、介绍下卷积操作的作用卷积网络中的卷积核参数是通过网络训练出来的通过卷积核的组合以及随着网络后续操作的进行,卷积操作可获取图像区域不同类型特征;基本而一般的模式会逐渐被抽象为具有高层语义的“概念”表示,也就是自动学习到图像的高层特征。2、CNN结构特点局部连接,权值共享,池化操作,多层次结构。1、局部连接使网络可以提取数据的局部特征2、权值共享大大降低了网络的训练难度,一个Filter只提取一个
转载
2024-03-20 10:48:07
113阅读
了解了semantic segmentation与detection的关系,也知道了detection任务的input和output,我要开始入门detection了!本文简述了detection基础知识,与此同时,介绍了detection based on region 家族: RCNN系列semant
转载
2024-06-03 10:18:22
53阅读
LSTM 中实现attention:https://distill.pub/2016/augmented-rnns/, 文章链接中给出的第三方attention实现非常清晰! 理解LSTM/RNN中的Attention机制Posted on 2017-07-03 Deep Learning | 1 Comment&nbs
神经网络架构平移不变性(translation invariance):不管检测对象出现在图像中的哪个位置,神经网络的前面几层应该对相同的图像区域具有相似的反应,即为“平移不变性”。局部性(locality):神经网络的前面几层应该只探索输入图像中的局部区域,而不过度在意图像中相隔较远区域的关系,这就是“局部性”原则。最终,可以聚合这些局部特征,以在整个图像级别进行预测。多输入多输出通道的互相关运
转载
2024-05-29 11:37:50
140阅读
CNN从2012年的AlexNet发展至今,科学家们发明出各种各样的CNN模型,一个比一个深,一个比一个准确,一个比一个轻量。我下面会对近几年一些具有变革性的工作进行简单盘点,从这些充满革新性的工作中探讨日后的CNN变革方向。注:水平所限,下面的见解或许有偏差,望大牛指正。另外只介绍其中具有代表性的模型,一些著名的模型由于原理相同将不作介绍,若有遗漏也欢迎指出。一、卷积只能在同一组进行
转载
2024-03-27 15:46:21
64阅读