在MXNet中,NDArray 是所有数学计算的核心数据结构。每个NDArray 代表了一个多维的,固定大小的齐次数组。如果你对python的科学计算包Numpy熟悉的话,你会发现mxnet.ndarray与numpy.ndarray在诸多方面十分相似。就像对应的NumPy数据结构,MXNet的NDArray也能够进行命令式计算。所以你可能会想,为什么不用NumPy呢?MXNet提供了两种引人注目
目录1.1、快速入门1.1.1、中文文档:1.1.2、makedown模式下加载图片1.1.3、求积分公式:1.1.4、查看版本信息1.1.5、numpy快的原因1.2、基本使用1.2.1创建1.2.2属性1.2.3形状的改变1.2.4常见数组的创建1.2.5、随机数1.3、切片和索引1.3.1、索引1.4、基本函数1.5、广播机制1.6、级联和分割1.6.1级联操作1.6.2分割操作1.7、函数
转载 2024-04-25 16:21:40
116阅读
目录1、numpy1.1、创建 numpy.array1.1.1、常规创建 numpy.array 的方法1.1.2、其他创建 numpy.array 的方法1.1.2、其他创建随机数 random1.2、numpy.array 基本操作1.2.1、numpy.array 的基本属性1.2.2、numpy.array 的数据访问1.2.3、numpy.array 合并和分割1.3、numpy.a
1、什么是GPU加速计算 GPU,又称显示核心、视觉处理器、显示芯片,是一种专门在个人电脑、工作站、游戏机和一些移动设备(如平板电脑、智能手机等)上图像运算工作的微处理器,与CPU类似,只不过GPU是专为执行复杂的数学和几何计算而设计的,这些计算是图形渲染所必需的。随着人工智能的发展,如今的GPU已经不再局限于3D图形处理了。GPU 加速计算是指同时利用图形处理器 (GPU) 和 CPU
NumPy学习笔记NumPy简介NumPy基础1、创建数组(矩阵)、数据类型2、数组属性查看:类型、尺寸、形状、维度3、小数、reshape(括号维度辨析)4、广播5、轴概念、数组拼接5.1轴5.2拼接6、三元运算符、行列交换7、numpy中的nan和inf7.1 简介7.2 nan性质NumPy常用方法NumPy生成随机数NumPy中的布尔索引NumPy常用统计方法思维导图  &n
转载 2024-05-24 16:41:28
47阅读
Numpy 使用教程--Numpy 数学函数及代数运算一、实验介绍1.1 实验内容如果你使用 Python 语言进行科学计算,那么一定会接触到 NumpyNumpy 是支持 Python 语言的数值计算扩充库,其拥有强大的高维度数组处理与矩阵运算能力。除此之外,Numpy 还内建了大量的函数,方便你快速构建数学模型。1.2 实验知识点Numpy 数学函数Numpy 代数运算1.3 实验环境pyt
通常,深度学习模型都是运行在GPU(图像处理器单元),因为它有SIMD并行化指令,所以能够快速处理图片。SIMD全称Single Instruction Multiple Data,单指令多数据流,能够复制多个操作数,并把它们打包在大型寄存器的一组指令集。其实CPU也可以使用SIMD指令,只不过GPU更擅长使用SIMD并行指令,GPU拥有更好地性能。Python的numpy库中矩阵运算会运用SIM
转载 2024-03-16 15:35:17
147阅读
0、背景python脚本运行在服务器端的卷积神经网络往往需要将图片数据从cv2(numpy.ndarray)->tensor送入网络,之后进行inference,再将结果从tensor-> numpy.ndarray的过程。由于cv2读取的数据存于内存中,以pytorch框架举例,在把数据送入GPU前会产生如下的数据转换: GPU准备进行inference之前会判断torch.cuda
1. 列表1.1 列表含义List(列表)是Python使用最频繁的数据列表,在其他语言中叫数组,是专门用来存储一串数据,存储的数据称之为元素列表是一个线性的集合,它允许用户在任何位置插入、删除、访问和替换元素。列表实现是基于数组或基于链表结构的。当使用列表迭代器的时候,双链表结构比单链表结构更快。有序的列表是元素总是按照升序或者降序排列的元素。列表用[]定义,元素之间用,分割,列表的索引从0开始
前导知识理解本文需要先了解:计算机底层基础知识,CPU、机器码、编译等《编译型语言与解释型语言如何在计算机底层运行》《计算机底层运转机制:多核、缓存、CPU、CU、ALU、Cache》 Python代码与GPU加速的关系《Python程序如何用GPU加速:Tesla、CUDA、Numba》在CPU入门numba《Python代码在CPU下加速:Numba入门》在GPU入门numba《Python通
转载 2024-05-22 23:34:00
667阅读
Python 科学计算:利用 NumPy 加速数值运算1. 引言2. NumPy 数组:高性能计算的基础2.1 NumPy 数组的创建2.2 NumPy 数组的属性2.3 高效存储:连续内存块与 strides 属性3. 向量化操作:加速数值运算的关键3.1 向量化操作的优势3.2 丰富的向量化操作类型3.3 向量化操作性能对比4. 广播机制:灵活处理不同形状的数组4.1 广播机制的规则4.2
转载 2024-08-01 13:11:58
43阅读
问题一:numba.errors.UntypedAttributeError: Failed at nopython (nopython frontend)Unknown attribute 'fill' of type array(float64, 2d, C)经过查阅以下文档: numba.pydata.org/numba-doc/latest/reference/numpysupported
转载 2024-07-31 14:20:38
46阅读
简单示例导入包import pycuda.autoinit import pycuda.driver as drv import numpy from pycuda.compiler import SourceModule初始化数据变量a = numpy.random.randn(400).astype(numpy.float32) b = numpy.random.randn(400).asty
转载 2024-02-26 17:02:25
132阅读
导读numpy是python中常用的一个矩阵运算库,而且numpy的底层都是采用c实现的,所以执行效率和速度也是很快的,但numpy是利用CPU来进行矩阵运算的,如果遇到大数据的矩阵运算,你会发现numpy真的很慢。那有没有什么办法来加速呢?想到大矩阵的运算肯定会想多使用GPU来计算,就让我们来看看numpyGPU版本cupy。 环境要求操作系统官方推荐安装环境是在linux操作系统
转载 2023-09-01 08:41:31
207阅读
numpy概述numpy是一个很强大的针对数组、矩阵的科学计算库,由于机器学习大量需要进行矩阵运算,而图像的本质也是数值矩阵,因此在机器学习、图像处理应用非常频繁。这里总结一下numpy的一些常用操作。数组类型Ndarray创建数组类型Ndarrayndarray对象是用于存放同类型元素的多维数组,是numpy中的基本对象之一。我们通常可以numpy.array的方式创建一个ndarray的数组
记录个人学习中遇见的python问题1.Python中的*args和**kwargs2021年12月16日10:25:32 *args **kwargs的使用 理解如下:args在前,kwargs在后 *args传入一个可变元组无需赋值fun(1, 2, 3) **kwargs传入的是一个字典,变量名作为字典的key,值作为字典value fun(1, 2, 3, name='yida', ag
转载 2024-05-03 16:09:26
66阅读
1什么是Numpy数组            NumPy是Python中科学计算的基础软件包。它是一个提供多维数组对象,多种派生对象(如被屏蔽的数组和矩阵)以及用于数组快速操作的例程,包括数学,逻辑,形状操作,排序,选择,I / O ,离散傅立叶变换,基本线性代数,基本统计运算,随
转载 2024-05-06 22:19:44
40阅读
当对一个程序进行加速的时候,很多时候需要预估出程序使用GPU加速后的加速比(比如你老板不懂GPU,或者甲方会问你预估加速比等等)。从大二接触GPU加速,到现在大概有6年时间,大大小小的项目也做了十几个,很多时候都需要事先回答加速比会有多少这个问题。这里简单的说一下自己的经验,欢迎各位大神指点。文中的经验基于目前主流的显卡,比如GTX1080,最低也得是GTX9**系列的。1.阿姆达尔定律谈加速比,
转载 2024-03-27 10:29:58
63阅读
这篇文章的测试不准确,可能是minpy和numpy同时用出的问题,现在最新的测试在下面这篇文章中 因为觉得这是整个测试过程,就没有删除这篇文章. 测试minpy 调用gpu 加速numpy的矩阵相乘. 小矩阵相乘 小矩阵相乘,行数在1-1000.测试用的都是方阵.所以元素数木在1到一百万. 测试元素数目一到100万的矩阵相乘. 上一篇中可以看到在行数超过1000的时候,gpu相对于cpu就会有绝对
转载 2023-10-29 16:37:48
80阅读
# 在GPU上运行Python的步骤和代码示例 ## 介绍 本文将向刚入行的小白介绍如何将Python的代码运行在GPU上。GPU的并行计算能力可以显著提高计算速度,尤其对于处理大规模数据的任务来说非常有用。我们将通过以下步骤来实现这一目标: 1. 检查GPU是否可用 2. 安装必要的库和驱动程序 3. 创建Python虚拟环境 4. 安装TensorFlow和Keras 5. 编写代码并在G
原创 2024-01-06 11:12:47
128阅读
  • 1
  • 2
  • 3
  • 4
  • 5