1. 文章信息文章题为《SPACE-TIME GRAPH NEURAL NETWORKS》,提出了一种新颖的图网络结构。2. 摘要文章介绍了时空图神经网络(ST-GNN),这是一种新的GNN结构,专门用于联合处理时变网络数据的基本时空拓扑。文章提出的体系结构由时间和图卷积滤波器组成,以及逐点非线性激活函数。文章首先介绍了卷积算子的一般定义,它模拟信号在其底层支持上的扩散过程。在这个定义的基础上提出
1:论文信息代码地址:https://github.com/LeronQ/STGCN-Pytorch1.1:论文思路使用Kipf & Welling 2017的近似谱图卷积得到的图卷积作为空间上的卷积操作,时间上使用一维卷积TCN对所有顶点进行卷积,两者交替进行,组成了时空卷积块,在加州PeMS和北京市的两个数据集上做了验证。论文中图的构建方法并不是基于实际路网,而是通过数学方法构建了一个
时空图卷积网络ST-GCN论文解读前言一、基于图神经网络的图分类问题二、ST-GCN文章解读1.基于openpose实现人体骨骼提取2. 基于人体关键点构造graph2.1 构造单帧graph(空间域)2.2 构造帧间graph(时间域)3. ST-GCN模型3.1 采样函数3.2 权重函数3.3 空域图卷积3.4 空间-时间模型3.5 分区策略3.6 可学习的边重要性权重4. ST-GCN模型
目录一、引言二、时序卷积神经网络2.1 因果卷积(Causal Convolution)2.2 膨胀卷积(Dilated Convolution)2.3 残差链接(Residual Connections)三、讨论和总结1. TCN的优点2. TCN的缺点参考论文:An Empirical Evaluation of Generic Convolutional and Recurrent Netw
论文简介北大发表在IJCAI 2018的一篇论文,论文题目:Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting,谷歌学术被引量296。论文背景实时交通预测是一个重要而复杂的问题,因为其不仅存在高度非线性和复杂的交通流,传统的预测方法经常忽视了时间和空间上的依赖
下面是博主认为解读st-gcn论文里两篇写的非常不错的文章,特此摘录下来以飨读者。解读一:https://zhoef.com/2019/08/24/14_ST-Gcn/解读二:https://www.cnblogs.com/shyern/p/11262926.html#_label3_1
转载 2021-06-05 16:49:18
2469阅读
1、文章信息《Attention Based Spatial-Temporal Graph Convolutional Networks for Traffc Flow Forecasting》。北京交通大学计算机学院博士生2019年初发在AAAI顶会上的一篇文章。2、摘要针对交通流预测问题,提出了一种基于注意力机制的时空图卷积网络(ASTGCN)模型。ASTGCN主要由三个独立部分组成,分
交通预见未来(29): 时空循环卷积神经网络用于交通速度预测1、文章信息《Spatiotemporal Recurrent Convolutional Networks for Traffic Prediction in Transportation Networks》。北航2017年发在sensors上的一篇文章。2、摘要近几十年来,大规模交通网络流量预测已成为一个重要而具有挑战性的课题。受运动
1.写在前面实验表明,RNN 在几乎所有的序列问题上都有良好表现,包括语音/文本识别、机器翻译、手写体识别、序列数据分析(预测)等。在实际应用中,RNN 在内部设计上存在一个严重的问题:由于网络一次只能处理一个时间步长,后一步必须等前一步处理完才能进行运算。这意味着 RNN 不能像 CNN 那样进行大规模并行处理,特别是在 RNN/LSTM 对文本进行双向处理时。这也意味着 RNN 极度地计算密集
文章目录文献与代码问题描述STNN动态因子图(DFG)DFG 的学习预测模型的使用考虑空间关系STNN-R(efining)STNN-D(iscovering) 文献与代码时空神经网络的提出来自这篇论文: Github 上有该模型的源码实现:https://github.com/edouardelasalles/stnn问题描述主要考虑的是如下问题:有 个时间序列,每个序列有 维特征,每段序
GCN有关学习资料:https://www.jianshu.com/p/8da425787830下面我从3个方面介绍:1)首先从大家熟知的业务场景出发,介绍图卷积的分析方法;【A.两个经典的业务场景】2)然后以实际结合实验,介绍GCN在节点分类、人机判别中的简单应用;B.利用GCN进行节点分类【https://cloud.tencent.com/developer/news/313536】C.GC
2、摘要时间序列预测和时空Kriging是时空数据分析中最重要的两项任务。近年来,GNN在时间序列预测方面取得了长足的进展,但对于Kriging问题——恢复未采样位置或传感器的信号的研究却很少。大多数现有的可扩展Kriging方法(例如,矩阵/张量补全)是Transductive learning(直推式学习),因此当一个新的传感器要插入时,需要再训练。本文提出了一个归纳图神经网络Kriging—
STGNNs:SPATIAL–TEMPORAL GRAPH NEURAL NETWORKS许多实际应用中的图在图结构和图输入方面都是动态的。STGNNs在捕获图的动态性方面占有重要地位。 这类方法的目的是建模动态节点输入,同时假设连接节点之间的相互依赖性。STGNNs同时捕获一个图的空间和时间依赖性。STGNNs的任务可以是预测未来节点值或标签或预测时空图标签。For example, a tra
转载 2023-09-15 19:39:09
153阅读
由于博主学疏才浅,经过一段时间学习,只能做到基础层面的理解,本文就较为通俗地讲解一下图卷积神经网络算法,下篇文章会讲解代码实现部分!文章目录GCN-图卷积神经网络算法介绍和算法原理1. GCN从何而来2. GCN是做什么的3. GCN算法的原理3.1 GCN的结构3.2 GCN的传播公式总结GCN-图卷积神经网络算法介绍和算法原理1. G
尽管在过去的几年中,神经网络的兴起与成功应用使得许多目标检测、自然语言处理、语音识别等领域都有了飞跃发展,但是将 RNN 或者GCN这样的深度学习模型拓展到任意结构的图上是一个有挑战性的问题。受限于传统深度学习方法在处理非欧式空间数据上的局限性,基于图数据结构的图神经网络应运而生。在当前的图神经网络,主要分为以下几类,图卷积网络、图注意力网络、图自编码器、图生成网络。而其中图卷积神经网络是许多复杂
GCN是从CNN来的CNN成功在欧式数据上:图像,文本,音频,视频 图像分类,对象检测,机器翻译CNN基本能力:能学到一些局部的、稳定的结构,通过局部化的卷积核,再通过层级堆叠,将这些局部的结构变成层次化的、多尺度的结构模式。 卷积核的数学性质:平移不变性非欧数据之图: 最大挑战——没有关于卷积的直观定义 本文主要解决: ①如何定义图上的convolution ②如何定义图上的pooling如何定
深刨浅析图神经网络(一)前言本文记录博主近期回顾图神经网络各组件的基础机理,包括从卷积层、池化层、激活函数、全连接层、循环层和注意力层等,到CNN、RNN、LSTM、GRU、Attention、Self-Attention和MultiHead-Attention。将撰写多篇博客进行总结反思,如有描述不妥之处,欢迎大家对博文进行批评指正、共同进步。(一)神经网络层级结构浅析1、卷积卷积层(Conv
一、图卷积神经网络图卷积神经网络(Graph Convolutional Network, GCN)是近些年逐渐流行的一种神经网络,发展到现在已经有无数改进的版本,在图网络领域的地位如同卷积操作在图像处理里的地位一样重要。图卷积神经网络与传统的网络模型LSTM和CNN等所处理的数据类型有所不同。LSTM和CNN只能用于网格化结构的数据,而图卷积神经网络能够处理具有广义拓扑图结构的数据,并深入发掘其
神经网络综述 Survey on Graph Neural Network摘要:近几年来,将深度学习应用到处理和图结构数据相关的任务中越来越受到人们的关注.图神经网络的出现使其在上述任务中取得了重大突破,比如在社交网络、自然语言处理、计算机视觉甚至生命科学等领域得到了非常广泛的应用.图神经网络可以把实际问题看作图中节点之间的连接和消息传播问题,对节点之间的依赖关系进行建模,从而能够很好地处理图结
图卷积网络(Graph Convolutional Network,GCN)是近年来逐渐流行的一种神经网络结构。不同于只能用于网格结构(grid-based)数据的传统网络模型 LSTM 和 CNN,图卷积网络能够处理具有广义拓扑图结构的数据,并深入发掘其特征和规律,例如 PageRank 引用网络、社交网络、通信网络、蛋白质分子结构等一系列具有空间拓扑图结构的不规则数据。相比于一般的拓扑图而言,
  • 1
  • 2
  • 3
  • 4
  • 5