示例EpochsBatch SizeLearning Rate总结Epochs(训练轮数)Test Accuracy: 增加训练轮数可以提高测试准确率,特别是在Test Accuracy尚未收敛时。训练轮数过多可能导致过拟合,反而降低测试的准确率。当训练轮数合适时,测试准确率会逐渐提高并趋于稳定。Test Loss: 在模型尚未收敛时,增加训练轮数可以降低测试损失。但过多的训练轮数可能导致过拟合,
神经网络训练加速的最简单方法是使用GPU,对弈神经网络中常规操作(矩阵乘法和加法)GPU运算速度要倍超于CPU。随着模型或数据集越来越大,一个GPU很快就会变得不足。例如,BERT和GPT-2等大型语言模型是在数百个GPU上训练的。对于多GPU训练,需要一种在不同GPU之间对模型和数据进行切分和调度的方法。PyTorch是非常流行的深度学习框架,它在主流框架中对于灵活性和易用性的平衡最好。Pyto
论文:Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks 论文链接:https://arxiv.org/abs/1604.02878 MTCNN(Multi-task Cascaded Convolutional Networks)算法是用来同时实现face detection和a
PytorchTensor各种数值称为张量,例如常数0阶、向量1阶、矩阵2阶张量创建方法import torch import numpy as np# 原始类型 torch.Tensor([1,2,3])tensor([1., 2., 3.])# 数据转换 torch.Tensor(arr)tensor([[ 0., 1., 2., 3.], [ 4., 5.,
转载 2023-12-23 22:36:24
22阅读
# 下载 PyTorch 很慢?这些技巧可以帮你! 在机器学习和深度学习领域,PyTorch 是一个备受欢迎的开源框架。然而,很多新手用户在安装 PyTorch 时会遇到下载速度缓慢的问题。接下来,我们将探讨原因,并给出一些解决方案,帮助你快速安装 PyTorch。 ## 为什么下载速度慢? 当你从官方源下载 PyTorch 时,速度慢的原因通常有几个: 1. **地理位置**:如果你位于
原创 10月前
989阅读
## 如何解决“卸载pytorch很慢”的问题 作为一名经验丰富的开发者,我将在本文中教您如何解决“卸载pytorch很慢”的问题。首先,我们需要了解卸载过程的整体流程,然后介绍每个步骤所需的具体操作和代码。 ### 卸载pytorch的流程 下面是卸载pytorch的整体流程,我们将使用表格来展示每个步骤的具体操作。 | 步骤 | 操作 | | ------ | ------ | | 1
原创 2023-12-27 05:58:22
219阅读
# PyTorch Dataloader很慢? 解决方案探讨 在深度学习中,大数据的处理和训练效率直接影响模型的性能与开发周期。PyTorch的数据加载工具(DataLoader)在处理大型数据集时,往往会成为瓶颈。本文将讨论Dataloader慢的原因,并提出相应解决方案,最后通过示例代码阐释如何优化Dataloader。 ## 一、PyTorch Dataloader基础 `DataLo
原创 2024-09-07 04:50:06
801阅读
# 安装PyTorch很慢?让我们来解决这个问题! 在深度学习的世界里,PyTorch是一款备受欢迎的开源框架。然而,对于许多新手来说,安装PyTorch的过程往往显得有些复杂且缓慢。在本文中,我们将探讨PyTorch的安装过程,并提供一些优化建议,帮助你加快安装速度。 ## 为什么安装PyTorch很慢PyTorch的安装速度受多种因素影响,包括网络连接、系统环境以及Python环境等
原创 2024-08-02 06:04:05
1043阅读
一、前言   本篇主要记录Faster rcnn 采用end to end 训练方式做训练二、制作自己的VOC2007格式的数据集 1、首先创建好路径 py-faster-rcnn/data/VOCdevkit2007/VOC2007 2、在VOC2007下分别创建文件夹 Annotations 、JPEGImages、ImageSets/Main
pytorch的 model.eval()和model.train()作用        pytorch中model.train()和model.eval()的区别主要在于Batch Normalization和Dropout两层。model.eval():认为停止Batch Normalization的均值和方差统计
转载 2024-05-09 16:05:18
43阅读
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录前言一、造成的原因二、查找不匹配的原因三、解决方法四、使用方法后言 前言最近在使用pytorch框架进行模型训练时遇到一个性能问题,即数据读取的速度远远大于GPU训练的速度,导致整个训练流程中有大部分时间都在等待数据发送到GPU,在资源管理器中呈现出CUDA使用率周期性波动,且大部分时间都是在等待数据加载。一、造成的原因其实
本文参考自 PyTorch Cookbook(常用代码段整理合集)训练代码示例先放个模型训练的整个 .py 检查版本torch.__version__ # PyTorch version torch.version.cuda # Corresponding CUDA version torch.backends.cudnn.versi
转载 2023-10-05 13:03:33
177阅读
目录一、模型保存与加载 Saving & Loading Model1. 原因2. 序列化与反序列化3. PyTorch序列化与反序列化4. 模型保存5. 模型加载二、模型段点续训练1. 原因2. 模型保存的参数3. 断点续训练三、参考 一、模型保存与加载 Saving & Loading Model模型的保存与加载,也可以称之为序列化与反序列化。1. 原因训练好的模型是为了以后
      初学神经网络和pytorch,这里参考大佬资料来总结一下有哪些激活函数和损失函数(pytorch表示)     首先pytorch初始化:  import torch import torch.nn.functional as F from torch.autograd import Variable i
项目结构总结一般项目都包含以下几个部分: 模型定义 数据处理和加载 训练模型(Train&Validate) 训练过程的可视化 测试(Test/Inference) 主要目录结构: - checkpoints/: 用于保存训练好的模型,可使程序在异常退出后仍能重新载入模型,恢复训练 - data/:数据相关操作,包括数据预处理、dataset实现等 -
转载 2023-07-05 10:21:00
212阅读
事实上,你的模型可能还停留在石器时代的水平。估计你还在用32位精度或*GASP(一般活动仿真语言)*训练,甚至可能只在单GPU上训练。如果市面上有99个加速指南,但你可能只看过1个?(没错,就是这样)。但这份终极指南,会一步步教你清除模型中所有的(GP模型)。不要让你的神经网络变成这样。(图片来源:Monsters U)这份指南的介绍从简单到复杂,一直介绍到你可以完成的大多数PITA修改,以充分利
简介ResNet(Residual Neural Network)由微软研究院的Kaiming He等四名华人提出,通过使用ResNet Unit成功训练出了152层的神经网络,并在ILSVRC2015比赛中取得冠军,在top5上的错误率为3.57%,同时参数量比VGGNet低,效果非常突出。ResNet的结构可以极快的加速神经网络的训练,模型的准确率也有比较大的提升。同时ResNet的推广性非常
Pytorch训练代码框架前言自己在学习和coding的过程中,感觉每次搞一个模型,需要写一堆的过程代码(大部分是可复用的),有的时候还需要从之前或者各个博客cv一点代码,这样开发起来效率可能比较低,所以整理了一份相对来说比较全面的Pytorch建模&训练框架,一些简单的trick也整理放在了里面,方便取用。因为个人用NLP比较多,这个框架主要也是在预训练+微调这一范式下写的,但是想去掉预
前言 关于 PyTorch 炼丹,本文作者表示:如果你有 8 个 GPU,整个训练过程只需要 2 分钟,实现 11.5 倍的性能加速。如何提升 PyTorch「炼丹」速度?最近,知名机器学习与 AI 研究者 Sebastian Raschka 向我们展示了他的绝招。据他表示,他的方法在不影响模型准确率的情况下,仅仅通过改变几行代码,将 BERT 优化时间从 22.63 分钟缩减到 3.1
PyTorch学习笔记(4)_模型、数据、训练过程的可视化Tensorboard 文章目录PyTorch学习笔记(4)_模型、数据、训练过程的可视化Tensorboard0 本章概要1 安装TensorBoard1.1 数据和模型准备1.2 设置TensorBoard2 写入TensorBoard3 在TensorBoard中查看模型4 添加一个“Projector”到TensorBoard5 在
  • 1
  • 2
  • 3
  • 4
  • 5