神经网络其实神经网络的本质就是学习从输入到输出的函数映射,因为遇到一个未知的问题,无法对问题进行函数建模,利用神经网络学习出函数模型,这个学习的结果最终其实是每一层神经元的权重。激活函数的作用其实就是增强网络模型的非线性性,因为激活函数就是一个非线性函数,当如果每一层神经元后不添加激活函数,那么输出其实就是输入的线性组合,不管网络有多少层,输出就是输入的线性组合。常见的激活函数有tanh(-1,1
目前深度学习和神经网络算法最典型的有两个应用实例,一个是图像识别,一个是语音识别。上一篇文章讲到图形识别的卷积神经网络(CNN)就广泛应用在了图像别方面,而这篇文章就来讲另一个广泛应用于语音识别的算法循环神经网络(RNN)。如果说CNN通过滤波器识别出图片中空间像素的关系,那么RNN就能够在时间序列的数据中找到规律,从而预测未来。所以RNN与CNN最大的不同就是, RNN的神经元输入的不仅是要有当
深度学习是一种特殊的机器学习,通过学习将世界使用嵌套的概念层次来表示并实现巨大的功能和灵活性,其中每个概念都定义为与简单概念相关联,更为抽象的表示以较为不抽象的方式来计算。卷积神经网络是一种前馈型神经网络,受生物自然视觉认知机制启发而来。卷积神经网络一般用于计算机视觉领域,由于有时候图片像素很多,导致神经网络输入特征值的维数很多。CNN结构图 在结构图中,第一层输入图片,进行卷积操作,得到第二层深
积卷神经网络(Convolutional Neural Network,CNN):神经网络中的一种拓展朴素的CNN和朴素的NN没有任何区别。 CNN主要思想: 局部连接 权值共享 CNN应用在特征提取领域 前向传播: 
转载
2023-10-10 09:16:29
309阅读
一、引言 设计深度学习模型的时候,不管是自己从头搭建还是修改别人的,都离不开相关参数的计算,主要是输入图形先后经过卷积、池化层后输出尺寸的变化,尤其是涉及多个卷积或池化层时,如果对这两种操作的原理不清楚,就会对网络的各个参数产生困惑,不知道如何去修改以便适配自己的业务场景。 这里对CNN(卷积神经网络
转载
2023-10-16 13:19:33
135阅读
卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度学习(deep learning)的代表算法之一。卷积神经网络具有表征学习(representation learning)能力,能够按其阶层结构对输入信息进行平移不变分类(shift-invariant
转载
2023-10-08 08:19:41
82阅读
卷积神经网络(Convolutional Neural Network,简称CNN),是一种前馈神经网络,人工神经元可以响应周围单元,可以进行大型图像处理。卷积神经网络包括卷积层和池化层。 卷积神经网络是受到生物思考方式启发的MLPs(多层感知器),它有着不同的类别层次,并且各层的工作方式和作用也不同。CNN网络结构如图所示,CNN网络工作时,会伴随着卷积并且不断转换着这些卷积。学习完C
转载
2023-10-08 08:19:29
146阅读
一、卷积神经网络简介 20世纪60年代,Hubel和Wiesel在研究猫脑皮层中用于局部敏感和方向选择的神经元时发现其独特的网络结构可以有效地降低反馈神经网络的复杂性,继而提出了卷积神经网络(Convolutional Neural Networks-简称CNN)。现在,CNN已经成为众多科学领域的研究热点之一,特别是在模式分类领域,由于该网络避免了对图像的复杂前期预处理,可以直接输入原始
转载
2023-10-08 08:20:13
74阅读
问题的提出在做关于python的卷积神经网络的项目中,发现了一个卷积层加一个BN层竟然一共有6个参数。百思不得其解。if batch_norm:
layers += [nn.Conv2d(in_channels, v, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(v),
转载
2023-10-08 07:43:28
99阅读
分享一些公式计算张量(图像)的尺寸,以及卷积神经网络(CNN)中层参数的计算。以AlexNet网络为例,以下是该网络的参数结构图。AlexNet网络的层结构如下:1.Input: 图像的尺寸是2272273.2.Conv-1: 第1层卷积层的核大小11*11,96个核。步长(stride)为4,边缘填充(padding)为0。3.MaxPool-1: 池化层-1对Conv-1进行池化,尺寸为3*3
转载
2023-10-08 07:43:36
255阅读
本文主要是对CNN和RNN的理解,通过对比总结各自的优势,同时加深自己对这方面知识的理解,其中代码引用采用的是VQA模型中对图像和文本的处理。1、CNN介绍CNN是一种利用卷积计算的神经网络。它可以通过卷积计算将原像素很大的图片保留主要特征变成很小的像素图片。本文以李宏毅老师ppt内容展开具体介绍。1.1 Why CNN for Image ①为什么引入CNN ?图片示意:给定一个图片放入全连接
转载
2023-09-25 10:25:42
234阅读
卷积网络在本质上是一种输入到输出的映射,它能够学习大量的输入和输出之间的映射关系,而不需要任何输入和输出之间的精确的数学表达式。 CNN模型由输入层、卷积层(Relu激活函数)、池化层、全连接层(也就是DNN+softmax)、输出层组成。 BP神经网络:分为信号前向传播和误差反向传播两个阶段。前向传播 信号的前向传播,从输入层经过隐含层,最后到达输出层。反向传播 误差的反向传播,从输出层到隐含层
转载
2023-10-16 13:24:05
133阅读
一、前言 这篇卷积神经网络是前面介绍的多层神经网络的进一步深入,它将深度学习的思想引入到了神经网络当中,通过卷积运算来由浅入深的提取图像的不同层次的特征,而利用神经网络的训练过程让整个网络自动调节卷积核的参数,从而无监督的产生了最适合的分类特征。这个概括可能有点抽象,我尽量在下面描述细致一些,但如果
转载
2016-03-31 21:47:00
883阅读
2评论
详解卷积神经网络(CNN)卷积神经网络(Convolutional Neural Network, CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。概揽卷积神经网络(Convolutional Neural Networks / CNNs / ConvNets)与普通神经网络非常相似,它们都由具有可学习的权重和偏置常量(biases)的神经
转载
2023-10-13 16:10:02
262阅读
目录1 概述2 一般结构(1)输入层(2)卷积层(3)激励层sigmoidtanhReLu(4)池化层(5)全连接层(6)输出层(7)中间层3 CNN应用4 常见神经网络主要对网上的一些神经网络信息进行总结整理。
1 概述
在卷积神经网络(Convolutional Neural Network,CNN)中,卷积层的神经元只与前一层的部分神经元节点相连,它的神经元间的连接是非全连接的,且同一
转载
2023-08-10 18:15:00
197阅读
卷积神经网络 文章目录卷积神经网络1. 从全连接到卷积2. 卷积层2.1 一维卷积2.2 二维卷积3. 填充与步幅4. 感受野5. 多输入多输出通道6. 池化层(汇聚层)7. 全连接层8. 卷积网络的整体结构9. 利用pytorch构建一个CNN网络 卷积神经网络(CNN)是一种具有局部连接、权重共享等特性的深层前馈神经网络. 1. 从全连接到卷积卷积神经网络最早主要是用来处理图像信息.在用全连接
认识: 卷积神经网络(CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(FNN),是深度学习的代表算法之一。卷积神经网络具有表征学习能力,能够按其阶层结构对输入信息进行平移不变分类,因此也被称为“平移不变人工神经网络。  
转载
2023-08-08 09:10:09
387阅读
概述深度学习是一种利用复杂结构的多个处理层来实现对数据进行高层次抽象的算法,是机器学习的一个重要分支。传统的BP算法仅有几层网络,需要手工指定特征且易出现局部最优问题,而深度学习引入了概率生成模型,可自动地从训练集提取特征,解决了手工特征考虑不周的问题,而且初始化了神经网络权重,采用反向传播算法进行训练,与BP算法相比取得了很好的效果。本章主要介绍了深度学习相关的概念和主流框架,重点介绍卷积神经网
目录1 卷积神经网络介绍1.1 卷积神经网络的雏形1.2 全连接层1.2.1 BP神经网络的实例1.3 卷积层1.4 池化层2 反向传播过程2.1 误差的计算2.2 误差的反向传播2.3 权重的更新1 卷积神经网络介绍1.1 卷积神经网络的雏形1.2 全连接层输入乘以权重求和加上偏置,通过一个激励函数即可得到输出:将神经元按列排列,列与列之间进行全连接,即可得到一个BP神经网络。BP算法包括:信号
CNN卷积神经网络(Convolution Neural Network, CNN)最早使用于图像领域,通常有多个卷积层+池化层组成,最后再拼接全连接层做分类。卷积层主要是执行卷积操作提取图片底层到高层的特征,池化层主要是执行降采样操作,可以过滤掉一些不重要的高频信息。(降采样是图像处理中常见的一种操作) 神经网络神经网络由大量的神经元相互连接而成。每个神经元接受线性组合的输入后,最开
转载
2023-10-12 13:40:11
131阅读