0.如何调参基础参数model = Sequential()
model.add(GRU(1000,input_shape=(train_X.shape[1], train_X.shape[2])))
model.add(Dense(1))
model.compile(loss='mse', optimizer=Adam(learning_rate=0.001),metrics=['mae', '
转载
2024-05-14 15:53:08
1385阅读
# -*- coding: UTF-8 -*-
# 这份文件的作用是作为一个示例,记录关于 LSTM 函数的各个参数的含义
import tensorflow as tf
import numpy as np
# 这里建立一个简单的模型演示 LSTM 层的特性
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.LS
转载
2024-01-30 01:31:49
539阅读
from sklearn.metrics import mean_squared_error
from sklearn.preprocessing import MinMaxScaler
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from math
转载
2024-06-06 04:53:47
69阅读
使用随机搜索算法寻找LSTM模型最优超超参数组合,以改善模型的性能和提高模型的预测精度。选取模型训练次数、模型隐含层的神经元个数和序列长度作为超参数;根据实际模型设置三个超参数的范围。每次从超参数空间(第一次从超参数全空间随机抽取,第二次之后从子空间随机抽取)中抽取27组超参数组合进行搜索,最后将模型的搜索结果保存到EXCEL文件中。import openpyxl as op
from rando
转载
2023-05-19 20:12:52
318阅读
self.lstm = nn.LSTM(input_size=n_class, hidden_size=n_hi
转载
2023-10-10 13:45:40
1860阅读
这里不介绍RNN与RNN的特殊情形LSTM,因为内容过多。一、相关函数介绍 1、创建Cell:tf.nn.rnn_cell.BasicRNNCell(num_units)num_units:创建的神经元个数。 2、创建由 RNNCellcell指定的递归神经网络,执行inputs的完全动态展开(即对单个Cell执行动态展开):tf.nn.dynamic_rnn( cell, i
转载
2024-03-20 20:00:51
143阅读
如果遇到这个错误:ValueError: Error when checking model input: the list of Numpy arrays that you are passing to your model is not the size the model expected. Expected to see 1 arra
转载
2024-02-29 13:40:39
192阅读
这里我们解释一下tf.nn.rnn_cell.BasicLSTMCell(), tf.nn.dynamic_rnn()的用法。1 tf.nn.rnn_cell.BasicLSTMCell()__init__(
num_units,
forget_bias=1.0,
state_is_tuple=True,
activation=None,
reuse=Non
LSTM网络结构 long short term memory,即我们所称呼的LSTM,是为了解决长期以来问题而专门设计出来的,所有的RNN都具有一种重复神经网络模块的链式形式。在标准RNN中,这个重复的结构模块只有一个非常简单的结构,例如一个tanh层。 LSTM也有与RNN相似的循环结构,但是循环模块中不再是简单的网络,而是比较复杂的网络单元。LSTM的循环模块主要有4个单元,以比较复杂
转载
2023-09-23 13:11:12
243阅读
上面这篇长博文,作者真心花了很多心血来创作,写的详细,易懂,对于学习lstm有很大的帮助。 读完后我觉得要理解几个门的作用,文中作者提到的三个例子恰到好处。个人认为这三个例子是弄明白lstm的关键。忘记门: 作用对象:细胞状态 作用:将细胞状态中的信息选择性的遗忘 让我们回到语言模型的例子中来基于已经看到的预测下一个词。在这个问题中,细胞状态可能包含当前主语的类别,因此正确的代词可以被选择出来。当
转载
2024-08-08 23:34:26
67阅读
title: LSTM原理及实现 date: 2018-02-10 10:49:21 tags: categories: 深度学习 文章目录title: LSTM原理及实现 date: 2018-02-10 10:49:21 tags: categories: 深度学习LSTM网络LSTM核心思想逐步理解LSTM遗忘门输入门输出门LSTM变体多层LSTMLSTM实现手写数字设置LSTM参数初始
转载
2023-11-03 13:42:08
116阅读
1.LSTM简单介绍(产生矩阵变化的都是下面图中的红色部分 一共有四个 上面那个tanh由于维度正确,只需要激活即可,没有矩阵变换)LSTM只有一个,他的权重都是共享的 红框从左到右,依次是:忘记门层: 决定从细胞状态中丢弃什么信息,通过当前时刻输入和前一个时刻输出决定细胞状态: 确定并更新新信息到当前时刻的细胞状态中输出门层: 基于目前的细胞状态决定该时刻的输出2.简单假设样例假设现有一个样本,
转载
2024-03-15 15:34:11
118阅读
LSTM模型LSTM(Long Short-Term Memory)也称长短时记忆结构, 它是传统RNN的变体, 与经典RNN相比能够有效捕捉长序列之间的语义关联, 缓解梯度消失或爆炸现象LSTM核心结构遗忘门输入门细胞状态输出门LSTM的内部结构图结构解释图:遗忘门遗忘门部分结构图与计算公式遗忘门结构分析与传统RNN的内部结构计算非常相似, 首先将当前时间步输入x(t)与上一个时间步隐含状态h(
转载
2023-11-15 14:06:50
199阅读
LSTM(long short-Term Memory,长短时记忆模型)
一、LSTM简述 LSTM是基于RNN进行修改,属于RNN的一种变形,为了避免RNN中出现的梯度消失问题。对比RNN,LSTM中多了一条贯穿所有状态的记忆状态,所有的遗忘门、记忆们、输出门也都结合记忆状态进行操作。二、LSTM的具体结构 &
转载
2024-04-02 06:17:48
124阅读
LSTM(Long Short Term Memory Network)长短时记忆网络,是一种改进之后的循环神经网络,可以解决 RNN 无法处理长距离的依赖的问题,在时间序列预测问题上面也有广泛的应用。lstm的目标就是为了学习八组参数,分别是遗忘门、输出门、输入门以及计算单元状态的权重和偏置项。这里有对应不同输入输出lstm模型的构造:https://www.jianshu.com/p/8809
转载
2023-07-27 22:28:12
174阅读
摘自:http://www.voidcn.com/article/p-ntafyhkn-zc.html(二)LSTM模型1.长短期记忆模型(long-short term memory)是一种特殊的RNN模型,是为了解决RNN模型梯度弥散的问题而提出的;在传统的RNN中,训练算法使用的是BPTT,当时间比较长时,需要回传的残差会指数下降,导致网络权重更新缓慢,无法体现出RNN的长期记忆的效果,因此
原创
2023-06-01 14:08:32
281阅读
1. 模型定义循环神经网络(RNN)模型存在长期依赖问题,不能有效学习较长时间序列中的特征。长短期记忆网络(long short-term memory,LSTM)1是最早被承认能有效缓解长期依赖问题的改进方案。2. 模型结构LSTM的隐藏状态计算模块,在RNN基础上引入一个新的内部状态:记忆细胞(memory cell),和三个控制信息传递的逻辑门:输入门(input gate)、遗忘门(for
转载
2023-11-25 13:57:38
4194阅读
LSTM参数 input_size:输入维数 hidden_size:输出维数 num_layers:LSTM层数,默认是1 bias:True 或者 False,决定是否使用bias, False则b_h=0. 默认为True batch_first:True 或者 False,因为nn.lstm
转载
2020-10-09 16:31:00
1815阅读
2评论
前言: 书接上回,通过把历年来的双色球蓝球数据爬取,可以看出,每期双色球蓝球之间并无任何关系,但仍存在问题: 决定蓝球数字可能并非取决于上一期蓝球的数据,可能取决于当期红球的数据,我们可能需要通盘考虑红球数据和蓝球数据。那这期的任务就是:使用红球和蓝球数据作为训练集来训练神经网络,把上期双色球的数字来预测下期双色球的数字。目标: 1、如果模型预测有效,(好家伙,发财了) 证明我们的搭建模型的方法存
转载
2023-09-03 10:07:15
142阅读
本文从 RNN 的局限性开始,通过简单的概念与详细的运算过程描述 LSTM 的基本原理,随后再通过文本生成案例加强对这种 RNN 变体的理解。LSTM 是目前应用非常广泛的模型,我们使用 TensorFlow 或 PyTorch 等深度学习库调用它甚至都不需要了解它的运算过程,希望本文能为各位读者进行预习或复习 LSTM 提供一定的帮助。
序列预测问题已经存在很长时间了。它被认为是数据
转载
2024-05-22 13:02:07
21阅读