参数的更新有许多方法;1.Vanilla update 最简单的更新形式。假定x是参数矢量,dx是梯度。更新形式为:# Vanilla update x+=-leaning_rate*dx其中learning_rate是学习率。2Mumentum update 在深度网络中,通常能够得到更好的收敛速率。这种更新方法来源于优化问题的物理学上的观点。特别的,损失函数可以解释为山丘的高(也可以说成是
  本文的论文来自: Notes on Convolutional Neural Networks, Jake Bouvrie。         这个主要是CNN的推导和实现的一些笔记,再看懂这个笔记之前,最好具有CNN的一些基础。这里也先列出一个资料供参考:[1] Deep L
CNN结构特点1.局部连接使网络可以提取数据的局部特征 2.首先权值共享就是滤波器共享,即是用相同的滤波器去扫一遍图像,提取一次特征,得到feature map。在卷积网络中,学好了一个滤波器,就相当于掌握了一种特征,这个滤波器在图像中滑动,进行特征提取,然后所有进行这样操作的区域都会被采集到这种特征,权值共享大大降低了网络的训练难度,一个滤波器只提取一个特征,在整个图片(或者语音/文本) 中进行
CupCnn是一个用java写的卷积神经网络。支持L1、L2正则化正则化的理论非常复杂,推导过程也比较繁琐,但是实现确实异常的容易,主要体现在权重的衰减。通俗的讲,就是我们每次在更新权重w的时候,可以的让他比应该的大小减小一点。// TODO Auto-generated method stub float[] wData = w.getData(); float[] gradData
Contents1 R-CNN2 SPPNet3 Fast R-CNN4 Faster R-CNN5 三种目标检测神经网络对比说明      在RCNN系列算法提出之前,目标检测是基于滑动窗口的方法。在图片上,选择大小适宜的窗口、合适的步进长度,进行从左到右、从上到下的滑动来遍历整张图片。每个窗口区域都送入CNN模型进行识别。滑动窗口目标检测方法明显的缺点是计算成本高。其中滑动窗口的大小、步幅是
卷积神经网络的特性:局部感知机制:卷积是一个滑动的窗口(卷积核)在图像(image)上根据给定的步距进行移动,每次移动都将窗口内的数值乘以卷积核对应的权重并且相加记录到一个新的矩阵中。局部感知说明其每次对图像的一部分进行压缩。权值共享:在图像的每一个局部中卷积核的权重不变。当图片具有多个维度(通道)时,压缩图片需要对应数量的卷积核,不同纬度的卷积核权值设计可以不同,并且也可以设计多套卷积核。每个通
基本理解CNN降低训练参数的2大法宝? 局部感受野、权值共享  局部感受野:就是输出图像某个节点(像素点)的响应所对应的最初的输入图像的区域就是感受野。  权值共享:比如步长为1,如果每移动一个像素就有一个新的权值对应,那么太夸张了,需要训练的参数爆炸似增长,比如从32x32的原图到28x28经过convolve的图,如果后者的每一个像素对应前面的一个参数,那参数实在是多。权
  第12章 训练你的第一个CNN      既然熟悉了CNN基础,我们将用python和keras实现我们的第一个CNN。我们通过快速的回顾当构建和训练你的CNNs时应当注意的keras配置开始本章。之后将实现ShallowNet,它是一个仅有单个CONV层的非常浅的CNN。但是,不要被这个网络的简洁性蒙蔽了你,ShallowNet在CIFAR-
因为R-CNN到Fast R-CNN再到Faster R-CNN是一个递进的改进过程,所以对前两个不清楚的还是要先去读一读这两篇文章,我在下面提出自己的读书笔记(私以为还是写的很全面的,对很多其他博客里面没有提到的坑都有涉及)。 一文详解R-CNN: 一文详解Fast R-CNN:有一篇Faster R-CNN的文章写的着实不错,重点推荐:https://zhuanlan.zhihu.com/p/
  深层网络需要一个优良的权重初始化方案,目的是降低发生梯度爆炸和梯度消失的风险。先解释下梯度爆炸和梯度消失的原因,假设我们有如下前向传播路径:  a1 = w1x + b1    z1 = σ(a1)  a2 = w2z1 + b2  z2 = σ(a2)  ...  an = wnzn-1 + bn  zn&nbs
import tensorflow as tf import helper import numpy as np import matplotlib as mpl from tensorflow.examples.tutorials.mnist import input_data # 设置字符集,防止中文乱码 mpl.rcParams['font.sans-serif'] = [u'simHei'
文章目录卷积公式没有padding,且s=1有padding,且s=1Half (same) paddingFull padding没有padding,s>1有padding,s>1Pooling 公式反卷积公式没有padding,且s=1有padding,且s=1Half (same) paddingFull padding没有padding,且s>1有padding,且s&
VGG模型的升级回顾CNN卷积核池化原理使用2个3x3卷积核可以来代替5*5卷积核计算参数量VGG网络结构注意点:1*1的卷积核作用一:减少了参数量作用二:增加非线性作用三:从fully-connected layers的角度来理解1*1卷积核作用四:解决了需要固定输入图像尺寸的问题 模型的升级AlexNet(2012),VGG(2014),GoogleNet(2014),ResNet残差网络(
1. 权重初始化1.1 相同的初始化权重神经网络中的所有权重都能通过梯度下降和反向传播来优化和更新。现在问题来了,如果每一层的权重全部初始化为同一个常数,不同层的常数可以不一样,会发生什么呢。这样会导致同一层的所有神经元前向传播和反向传播完全相同。如下图,前向传播过程中,每一个隐层接收到的输入是一样的(x1,x2,...),每个隐层神经元对应每个输入神经元的权重又是相同的,那么每个隐层神经元的输出
KNN邻近算法KNN的自述原理参数K值确定K和weights对模型的影响KNN在不同数据集的表现 KNN的自述Km模型仍为有监督的学习算法。它属于一种惰性学习算法,即不会预先生成一个分类或预测模型,用于新样本的预测,而是将模型的构建与未知数据的预测同时进行,该算法与决策术功能类似既可以针对离散性变量作出分类,又可以对于连续型变量作出预测,其核心思想就是比较已知y值的样本与未知y值样本的相似度,然
一.引言函数式 API 的重要特性是能够多次重复使用一个层实例,如果对一个层实例调用两次,而不是每次调用都实例化一个新层,那么每次调用就可以重复使用相同的权重。这样可以构建具有共享分支的模型。二.共享层权重1.模型结构假设模型判断两个句子的相似度,模型有两个输入,分别为句子A,句子B,并输出一个 0-1 的分数代表相似度。在这种前提下,句子AB是具备交换性的,即A与B的相似性应该与B与A的相似性是
学习记录一级目录二级目录1.CNN(Convolutional Neural Networks,卷积神经网络)1.1神经元1.2激活函数1.3神经网络1.4卷积神经网络1.5什么是卷积2.RNN(Recurrent Neural Networks,循环神经网络)3.LSTM(Long Short Term Memory,长时间记忆网络)4.GRU(Gated Recurrent Unit)5.L
CNN的全称是Convolutional Neural Network,是一种前馈神经网络。由一个或多个卷积层、池化层以及顶部的全连接层组成,在图像处理领域表现出色。1.人工神经网络1.1神经元神经网络由大量的神经元相互连接而成。每个神经元接受线性组合的输入后,最开始只是简单的线性加权,后来给每个神经元加上了非线性的激活函数,从而进行非线性变换后输出。每两个神经元之间的连接代表加权值,称之为权重
深度学习的一些概念理解(共享权重,最大池化,激活函数,残差网络):深度学习中有一个概念,叫共享权重,就是一个层中是共享权重的,这样做的好处有两个: a 能够减少参数的数量,加速训练 b 由于共享权重,使得整幅图对应的这个权重下求的的特征具有平移不变性 个人对于共享权重的理解:其实所谓的共享权重,比如对于一个5X5的卷积,不管图像多大,全部使用这样的5X5的卷积核去做卷积,由于卷积大小的5X5
层次分析法第一步:建立递阶层次结构第二步:构造两两判断矩阵准则层方案层第三步:计算权重(一致性检验)和得分计算权重一致性检验算术平均法几何平均法特征值法计算得分代码: 第一步:建立递阶层次结构第二步:构造两两判断矩阵怎么构造判断矩阵呢?如果专家没有给你判断矩阵时,就自己填。比如对于准则层,问小明根据下面的标度,C1和C2你认为哪个更重要呢? 小明回答:我认为花费比景色略微重要(介于1和3之间,那就
  • 1
  • 2
  • 3
  • 4
  • 5