一、TensorFlow基础1、tensorflow简介深度学习,如深度神经网络、卷积神经网络和递归神经网络已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。 深度学习框架:TensorFlow、caffe、Torch、Theano、CNTK TensorFlow特点:① 真正的可移植性:引入各种计算设备的支持包括CPU/GPU/TPU
转载
2020-02-08 11:03:00
138阅读
1. 背景tensorflow是一套可以通过训练数据的计算结果来反馈修改模型参数的一套框架,由谷歌公司于2015年11月开源,可以点击playground来可视化的尝试操作tensorflow,随便试了一下,挺好玩: 使用如下语句进行安装:pip install tensorflowtensorflow近期发布了2.0预览版本,改动极大,在第4部分介绍。TensorFlow再这么完善下去,都可以不
转载
2024-05-14 15:01:47
139阅读
前言新手学习可以点击参考Google的教程。开始前,我们先在本地安装好 TensorFlow机器学习框架。 1. 首先我们在本地window下安装好python环境,约定安装3.6版本; 2. 安装Anaconda工具集后,创建名为 tensorflow 的conda 环境:conda create -n tensorflow pip python=3.6; 3. conda切换环境:act
转载
2024-03-17 14:42:49
41阅读
虽然可以通过自己编程实现前向和反向传播过程但是随着神经网络的层数增加会导致编程趋于复杂,为了节省这种工作,可以使用现有深度学习框架。目前的已有的学习框架有很多Tensorflow,caffe,Torch,pytorch,Theano等,使用最多的目前是Tensorflow,本文讲简单介绍下Tensorflow的使用方法。1.预备工作import tensorflow as tf
sess = tf
转载
2024-03-26 20:23:35
33阅读
一、Tensorflow框架Tensorflow框架的基本组成:数据模型(Tensor),计算模型(计算图),运行模型(Session)1. 计算图:Tensorflow中的每一个计算都是计算图上的一个节点,而节点之间的边描述了计算之间的依赖关系。系统会自动维护一个默认的计算图,通过tf.get_default_graph()可以获得默认的计算图。可以通过a.graph is tf.ge
转载
2024-03-31 19:11:16
74阅读
TensorFlow 源码 截止到目前为止,TensorFlow 在 【Github】 的 Contributors 已经接近900人,Fork 30000次。 学习这么庞大的开源项目,首先必须要搞清楚其代码组织形式,我们先来看目录结构: &nb
转载
2024-05-22 11:11:10
40阅读
目录1 TensorFlow介绍2 TensorFlow的安装3 张量及其操作4 tf.keras介绍5 总结 1 TensorFlow介绍深度学习框架TensorFlow一经发布,就受到了广泛的关注,并在计算机视觉、音频处理、推荐系统和自然语言处理等场景下都被大面积推广使用,接下来我们深入浅出的介绍Tensorflow的相关应用。TensorFlow的依赖视图如下所示:TF托管在github平台
转载
2024-03-29 08:45:52
113阅读
TensorFlow Lite 是一种用于设备端推断的开源深度学习框架。 按照官方的说法,TensorFlow Lite 是一组工具,可帮助开发者在移动设备、嵌入式设备和 loT 设备上运行模型,以便实现设备端机器学习。 所以在设计之初,Tensorflow Lite没有打算在Windows端进行部署的,但是最近它提供了CMakeLists.txt编译脚本,因而可以将其编译为动态库以在Window
转载
2024-04-23 10:03:50
119阅读
摘要本文为系列博客tensorflow模型部署系列的一部分,用于实现通用模型的TensorFlow Serving部署。本文主要实现用TensorFlow Serving部署tensorflow模型推理服务器。实现了tensorflow模型在服务器端计算方案,并提供相关示例源代码。相关源码见链接引言本文为系列博客tensorflow模型部署系列的一部分,用于实现通用模型的独立简单服务器部署。本文主
转载
2024-05-09 10:58:28
65阅读
import tensorflow as tf #张量的计算图,神经网络的计算过程,只搭建,不运算。 a=tf.constant([1.0,2.0]) b=tf.constant([3.0,4.0]) result=a+b print(result) c=tf.constant([[1.0,2.0]]) d=tf.constant([[3.0],[4.0]]) y=tf.matmul(c,d...
原创
2021-07-19 11:06:14
148阅读
tensorflow IO流程一、队列1、队列与队列管理器(1)队列(2)队列管理器二、文件读取1、文件读取流程2、文件读取API(1)文件队列构造(2)文件阅读器(3)文件内容解码器三、图片处理1、图像基本知识2、图像读取API3、 TFRecords分析、存取(1)TFRecords存储(2)TFRecords读取方法(3)Cart-10数据批处理结果存入tfrecords流程(4)读取tf
转载
2024-03-26 20:58:22
79阅读
TensorFlow (dataflow programming)是一个机器学习框架,深度学习、神经网络等,它都会使你如虎添翼。
原创
2022-10-25 07:44:01
119阅读
关于tensorflow的分布式训练和部署, 官方有个英文的文档介绍,但是写的比较简单, 给的例子也比较简单,刚接触分布式深度学习的可能不太容易理解。在网上看到一些资料,总感觉说的不够通俗易懂,不如自己写一个通俗易懂给大家分享一下。
如果大家有看不懂的,欢迎留言,我再改文章,改到大学一年级的学生可以看懂的程度。 1. 单机多GPU训练
先简单介绍下单机的多GPU训练,然
转载
2024-07-26 15:31:53
73阅读
在《基于TensorFlow Serving的YOLO模型部署》文章中有介绍tensorflow 1.x版本的模型如何利用TensorFlow Serving部署。本文接着上篇介绍tensorflow2.x版本的模型部署。工作原理架构图**核心概念 ****⑦ ServableHandler:**servable实例,用于处理client发送的请求servable的生命周期:● 一个Source插
转载
2024-04-02 16:13:41
65阅读
最近一个项目需要使用Tensorflow lite, 官网上的解释又特别简单,主要给了一个例子,但是这个例子和官网的解释又不一样。。。。这里简单记录下操作方法。添加依赖某些加载的方法,依赖并不支持。在自己的build.grandle的依赖中添加:implementation 'org.tensorflow:tensorflow-lite:1.15.0'
implementation 'or
转载
2024-01-02 12:26:13
62阅读
前言: (2)本文章后续将在 B站 出门吃三碗饭 账号下更新讲解视频,可以同时观看食用Abstract:本文将通过介绍使用TensorflowLite框架,利用AndroidStudio工具来实现识别模型的移动端部署1.Introduction:因为最近有粉丝有反应的一个需求,训练好了一个模型如何迁移到移动端使用,于是我忙活了三四天,有了此文~2.RelatedWorks:TensorflowLi
转载
2024-05-13 13:16:35
95阅读
一、处理结构因为TensorFlow是采用数据流图(data flow graphs)来计算, 所以首先我们得创建一个数据流流图, 然后再将我们的数据(数据以张量(tensor)的形式存在)放在数据流图中计算. 节点(Nodes)在图中表示数学操作,图中的线(edges)则表示在节点间相互联系的多维数据数组, 即张量(tensor). 训练模型时tensor会不断的从数据流图中的一个节
转载
2024-06-15 09:30:45
61阅读
目录一、基本概念二、操作步骤详解2.1实现规划:(建议版本是自己运行的版本)2.2详细操作步骤:1、安装pycharmIDE编辑软件。2、安装Anaconda3、安装配置工具、安装依赖包,增加源的地址,加快下载速率。三、代码运行 人工智能神经网络学习离不开keras、tensorflow这几个包的支持。所以如何运用好keras、tensorflow是实现计算机深度学习的关键了
转载
2024-01-11 23:26:32
89阅读
##系统配置:ubuntu18.04 cuda9.0 cudnn7.0 python2.7 tensorflow-1.10bazel-0.16 JDK8 SDK28.0.2 NDK12 android-8.0经过四天多的折腾,终于将tensorflow官方的android demo部署到了手机上,虽然遇到了很多坑,但终究目的还是达到了。由于tensorflow的源码更新速度太快,导致如今很多教程都
转载
2024-03-30 10:55:10
118阅读
目录Keras介绍Keras和tensorflow关系Keras介绍Keras 是一个高级的Python 神经网络框架,其文档详。Keras 已经被添加到TensorFlow 中,成为其默认的框架,为TensorFlow 提供更高级的API。如果读者不想了解TensorFlow 的细节,只需要模块化,那么Keras 是一个不错的选择。如果将TensorFlow 比喻为编程界的Java 或...
原创
2021-06-10 17:32:50
217阅读