目录
第一章 为什么网络是不安全的?
第二章 信息安全的基本概念
第一节 安全的定义
第二节 认证与授权
第三章 加密与算法  
「论文名称」:《DeepHSV: User-Independent Offline Signature Verification Using Two-Channel CNN》「开源代码」:https://github.com/dlutkaka/DeepHSV 介绍堪称是世界上第一个可以在GPDS手写签名数据库(世界最新、最大的手写签名数据库,也是鉴定最为困难的数据库)上鉴定准确率达到“可用”级别
转载
2024-04-12 11:08:48
1335阅读
我做的《笔迹鉴别》是与文字无关的笔迹鉴别,简单的说就是你提供给我多个人手写的“一二三四”,然后再提供给我其中一个人写的“五六七八”,我就可以通过程序判断究竟是谁写的。待识别的文字与我手头掌握的文字资料可以是不同的汉字,这就是所谓的与文字无关的笔迹鉴别。当然仅仅提供四五个汉字是不行的,需要提前准备大量的笔迹素材才可以。我主要采用“纹理识别”的方式进行笔迹鉴别,也就是将笔迹看作是某种纹理(就像布纹、木
Google Play,作为全球最大的 Android 应用市场,每天都有无数的新应用上传。在这个过程中,确保新上传的应用不是现有应用的复制版本是至关重要的。这就引出了一个问题:Google Play 是如何检测应用之间的相似性的?本文将详细解释一种可能的方式,但请注意 Google Play 的确切算法是未公开的,这只是基于一般的软件相似性检测方法的推测。账号、IP、设备等必须要独立的问题我就不
转载
2023-09-27 09:58:45
546阅读
今天和大家分享一篇有关文本相似度的经典文章。Severyn A , Moschitti A . Learning to Rank Short Text Pairs with Convolutional Deep Neural Networks[C]. the 38th International ACM SIGIR Conference. ACM, 2015.有关实现,幸运地在gith
转载
2023-09-03 11:45:31
184阅读
文献标题:SimGNN: A Neural Network Approach to Fast Graph Similarity Computation 论文链接: https://arxiv.org/abs/1808.05689 代码链接: https://paperswithcode.com/paper/graph-edit-distance-computation-via-graph#cod
最近在做文本相似度任务,首先是生成句向量,接着计算两句话的余弦距离,得到两句话的相似程度,从而判断一句话的语义。这时候我就在想,为什么不用文本分类任务做呢,如果用文本分类任务,也是最后得到一句话归属的类别。下面是我的一些想法。文本分类呢需要先标注好一段文本是属于哪一个类别,类别需要预先定义好,再去训练模型,使得输入一句话或一段文本,模型输出这段文本属于哪个类别。常用的文本分类算法有:CNNRNNB
转载
2024-05-31 21:35:27
21阅读
在数据分析和数据挖掘的过程中,我们经常需要知道个体间差异的大小,进而评价个体的相似性和类别。最常见的是数据分析中的相关分析,数据挖掘中的分 类和聚类算法,如K最近邻(KNN)和K均值(K-Means)。当然衡量个体差异的方法有很多,最近查阅了相关的资料,这里整理罗列下。 为了方便下面的解释和举例,先设定我们要比较X个体和Y个体间的差异,它们都包含了N个维的特征,即X=(x1, x2, x3, …
转载
2024-05-04 14:06:56
204阅读
本文的内容是紧接着上一篇文章的内容,上一篇文章讲到 CNN在文本分类领域的应用,本文将讨论其在文本相似度计算方面的应用,文本相似度可以用于搜索引擎、文本去重、文本挖掘、推荐系统等多个领域,也是NLP中需要处理的一类任务。0.文本相似度计算所谓文本相似度计算,是指给定两个文本(一般为字符串),并通过算法给出其相似度幅度的衡量,一般计算结果为0-1之间的值,下面简单介绍几种,较为传统和常见的文本相似度
转载
2023-08-08 14:38:35
351阅读
文本在线查重(Online Copy Detection)的实现1 概述1.1 需求给定一段文本,需要返回其和网络开放性数据相比的整体重复率以及具体的重复情况(具体重复的句子/字符串以及重复程度)。1.2 问题分析该问题属于copy-detection领域。由于需要给出查询文本具体重复的句子/字符串以及相应的重复程度,所以我们需要对查询文本进行合理的切分,并需要一一计算出切分后得到的字符串与在线开
转载
2024-06-03 12:41:10
71阅读
在做分类时常常需要估算不同样本之间的相似性度量(Similarity Measurement),这时通常采用的方法就是计算样本间的“距离”(Distance)。采用什么样的方法计算距离是很讲究,甚至关系到分类的正确与否。 本文的目的就是对常用的相似性度量作一个总结。本文目录:1. 欧氏距离2. 曼哈顿距离3. 切比雪夫距离4. 闵可夫斯基距离5. 标准化欧氏距离6. 马氏距离7. 夹角余弦8.
Dalvik是Google公司自己设计用于Android平台的虚拟机,Dalvik虚拟机是Google等厂商合作开发的Android移动设备平台的核心组成部分之一。它可以支持已转换为 .dex(即Dalvik Executable)格式的Java应用程序的运行,.dex格式是专为Dalvik设计的一种压缩格式,适合内存和处理器速度有限的系统。Dalvik 经过优化,允许在有限的内存中同时运行多个虚
转载
2024-01-16 14:11:08
152阅读
文章相似度检测工具,提升内容质量,快速通过审核,如果需要检测一篇文章的在搜索引擎的原创度用什么工具会比较好?百度,这个占比最大的搜索引擎,为了提高用户体验和内容质量,也为了更好的支持原创内容,时不时就会不断的更新算法,让更好的内容展示出来。 而对于内容创作者来说,能够创作出一篇原创内容是非常不容易的,但是原创内容的创作是非常耗费时间和精力。所以大部分的内容创作者都会选择是伪原创或者搬运,而伪原创搬
转载
2023-11-10 13:36:02
78阅读
在开始阅读本篇之前,希望你已经看过cnn-text-classification-tf,使用CNN做文本分类项目,start两千多。因为很经典,网上的解读也随处可见,因此就不介绍。但是看了这个项目,可以了解tensorflow构建项目的关键步骤,可以养成良好的代码习惯,这在初学者来说是很重要的。Tensorflow中关键的两个步骤,首先对数据进行处理,转化为合适的tensor作为input输入到图
转载
2023-10-12 12:27:31
95阅读
背景以图搜图,是日常生活中我们经常会用到,例如在选购一款商品时,想要对比价格,往往会在各个购物app上通过搜图的形式来看同一款产品的价格;当你碰到某种不认识的植物时,也可以通过以图搜图的方式来获取该种植物的名称。而这些功能大都是通过计算图像的相似度来实现的。通过计算待搜索图片与图片数据库中图片之间的相似度,并对相似度进行排序为用户推荐相似图像的搜索结果。同时,通过检测图片是否相似也可用于判断商标是
转载
2023-10-07 12:58:00
499阅读
在一篇SCI文章中,与其他文章有相同的表达和相似的内容是很常见的。但是与其他文章的重复太多被认为是抄袭。因此,在发表SCI之前,对SCI的复制进行检查是非常重要的。但是,SCI复制结果不能超过多少? 由于绝大多数国际sci期刊对提交的论文基本上都采取了严格的检查步骤,如果重复率高,可能会被拒绝。被cro
转载
2023-07-14 15:33:59
134阅读
文本相似度的计算广泛的运用在信息检索,搜索引擎, 文档复制等处: 因此在各种不同的情况与任务中,有不同的文本相似度计算。方法1 编辑距离 编辑距离又称Levenshtein距离,是指将一个字符串转为另一个字符串所需的字符编辑次数,包括以下三种操作: 插入 - 在任意位置插入一个字符 删除 - 将任意一个字符删除 替换 - 将任意一个字符替换为另一个字符 编辑距离可以用来计算两个字符串的相似度,它的
转载
2023-11-19 14:00:22
92阅读
综述: 算法首先把源代码按照其自身的结构进行分段提取,然后对各个分段进行部分代码变换,再以带权重的编辑距离为相似度量标准对这些符号进行序列聚类,得到相似的程序代码片段,以达到对源程序进行相似功能检测的目的。 本文提取的是源代码中的功能段,也就是功能函数。 定义: 1.序列1和序列2的编辑距离:序列S1经过插入,删除,替代等操作变换成序列S2所需要的最少操作次数 2.S1与S2的签名距离:取某字母在
转载
2023-11-10 16:56:03
189阅读
前言在数据挖掘中有很多地方要计算相似度,比如聚类分析和协同过滤。计算相似度的有许多方法,其中有欧几里德距离、曼哈顿距离、Jaccard系数和皮尔逊相关度等等。我们这里把一些常用的相似度计算方法,用python进行实现以下。如果是初学者,我认为把公式先写下来,然后再写代码去实现比较好。 欧几里德距离几个数据集之间的相似度一般是基于每对对象间的距离计算。最常用的当然是欧几里德距离,其公式为:
转载
2024-06-05 15:29:41
37阅读
前言由于项目需要,需要对某些种子用户进行look-alike,找到相似用户,所以近期对相似向量检索库Faiss进行一定的了解,接下来,结合相关资料,把我对这个库的了解记录在这里,也希望对你有所帮助!一:Faiss简介Faiss全称(Facebook AI Similarity Search)是Facebook AI团队开源的针对聚类和相似性搜索库,为稠密向量提供高效相似度搜索和聚类,支持十亿级别向
转载
2023-12-21 02:46:22
101阅读