如果以面向对象(OOP)的方式进行BP神经网络系统的设计与实践的话,因为权值的初始化以及类的构造都只进行一次(而且发生在整个流程的开始阶段),所以自然地将权值(全部层layer之间的全部权值)初始化的过程放在类的构函数中,而权值的初始化,一种trivial常用的初始化方法为,对各个权值使用均值为0方差为1的正态分布(也即np.random.randn(shape))进行初始化,也即:class N
转载 2023-07-04 13:02:55
76阅读
为了使模型具有更好的表现力,往往需要各层的激活值的分布都要求有适当的广度。为什么呢?因为通过在各层间传递多样性的数据,神经网络可以进行高效的学习。反过来想,如果有多个神经元都输出几乎相同的值,那他们就没有存在的意义了。比如,如果100个神经元都输出几乎相同的值,那么也可以由1个神经元来表达基本相同的事情。因此,激活值在分布上有所偏向会出现“表现力受限”的问题。这里我们通过一个实验,观察权重初始值对
个人论文完成笔记 ^ _ ^欢迎批评指正 本篇文章研究的是全连接的多层神经网络中的权重初始化问题,以8-20-30-1的MLP为实验对象。神经网络是一种要素间关联性极强的结构,从输入数据,输入数据的scaling,输入数据划分的batch,到每一隐藏层初始化的权重,节点个数,激活函数的选择,再到层数,最终输出函数的选择,和输出节点个数,都是彼此影响的,其中,权重初始化,与激活函数的选择和输入数据存
文章目录前言一、简介二、BP神经网络网络流程1.结构2.流程3.实例4.优缺点总结 前言BP(back propagation)神经网络是1986年由Rumelhart和McClelland为首的科学家提出的概念,是一种按照误差逆向传播算法训练的多层前馈神经网络,是应用最广泛的神经网络模型之一。一、简介BP神经网络是一种多层的前馈神经网络,其主要的特点是:是前向传播的,而误差是反向传播的。
卷积神经网络一、卷积神经网络BP网络(传统前馈神经网络)相比具有以下特点:(1)、采取局部连接(稀疏连接),减少了所需参数; (2)、可直接处理二维数据,故常被用于图片处理操作; (3)、具有三个基本层——卷积层、池化层、全连接层:卷积层CNN算法常用于图片处理,其中卷积层是通过多个卷积核对输入的图片像素矩阵进行局部连接,通过权值共享与卷积的方式进行图片的特征提取得到特征映射数据。(所以卷积核又
 BP神经网络算法原理BP神经网络算法是一种神经网络学习算法[4],其原理是在梯度下降法,利用梯度搜索技术,以期使网络的实际输出值和期望输出值的误差均方差为最小。其优点在于泛化能力、自学习和自适应能力强,及特别适合于求解内部机制复杂的问题。BP神经网络算法步骤BP神经网络的过程主要分为两个阶段,第一阶段是信号的前向传播,从输入层经过隐含层,最后到达输出层;第二阶段是反向传播,从输出层到隐
转载 2018-11-07 11:46:43
411阅读
BP神经网络方法。人工神经网络是近几年来发展起来的新兴学科,它是一种大规模并行分布处理的非线性系统,适用解决难以用数学模型描述的系统,逼近任何非线性的特性,具有很强的自适应、自学习、联想记忆、高度容错和并行处理能力,使得神经网络理论的应用已经到了各个领域。近年来,人工神经网络在水质分析和评价中的应用越来越广泛,并取得良好效果。在这些应用中,纵观应用于模式识别的神经网络BP网络是最有效、最活跃
1、BP网络 的激活函数 必须是处处可微的。 2、S型激活函数所划分的区域是一个 非线性 的超平面组成的区域,它是比较柔和、光滑的任意界面 ,因而它的分类比线性划分精确、合理,这种网络的容 错性较好。另一个重要特点是由于激活函数是连续可微的,它可以严格利用梯度法进行推算。 3、一般情况下BP网络结构均是在隐含层采用S型激活函数,而输出层采用线性激活函数。   4、 动手编写网络
BP(back propagation)神经网络是1986年由Rumelhart和McClelland为首的科学家提出的概念,是一种按照误差逆向传播算法训练的多层前馈神经网络,是目前应用最广泛的神经网络。 发展背景 编辑 在人工神经网络的发展历史上, 感知机(Multilayer Perceptron,MLP)网络曾对 人工神经网络的发展发挥了极大的作用,也被认为是一种真正能够使用
1. 为什么要初始化权重为了使网络中的信息更好的传递,每一层的特征的方差(标准差)应该尽可能相等,否则可能会导致梯度爆炸或者消失。权重初始化的目的是在深度神经网络中前向传递时,阻止网络层的激活函数输出爆炸(无穷大)或者消失(0)。如果网络层的输出爆炸或者消失,损失函数的梯度 也会变得很大或者很小,无法有效后向传递,使得神经网络需要更长的时间才能收敛甚至无法收敛。矩阵乘法是神经网络中的基本数学操作。
转载 2023-07-05 17:06:26
408阅读
1 基本概念BP神经网络是一种通过误差反向传播算法进行误差校正的多层前馈神经网络,其最核心的特点就是:信号是前向传播,而误差是反向传播。前向传播过程中,输入信号经由输入层、隐藏层逐层处理,到输出层时,如果结果未到达期望要求,则进入反向传播过程,将误差信号原路返回,修改各层权重。2 BP神经网络结构BP神经网络包含输入层、隐藏层和输出层,其中,隐藏层可有多个,其中,输入层和输出层的节点个数是固定的(
原创 2021-03-23 20:00:09
3030阅读
在玩dota类游戏的时候,局势情况不好的情况下,新手的第一反应就是队友傻逼,然后想着就投降。老玩家呢往往先看看是不是自身问题。不仅游戏,很对地方都是如此,新人在使用神经网络的时候,在发现最终的结果不好的情况下,想着就是模型算法本身的问题,然后换成其他的模型算法,这样往往结果并没有改善。老手们往往会检查许多方面,看看数据本身是否有异常,网络结构编写是否有问题,是否出现了过拟合现象等等。本文主要谈谈网
深度学习是一种特殊的机器学习,通过学习将世界使用嵌套的概念层次来表示并实现巨大的功能和灵活性,其中每个概念都定义为与简单概念相关联,更为抽象的表示以较为不抽象的方式来计算。卷积神经网络是一种前馈型神经网络,受生物自然视觉认知机制启发而来。卷积神经网络一般用于计算机视觉领域,由于有时候图片像素很多,导致神经网络输入特征值的维数很多。CNN结构图 在结构图中,第一层输入图片,进行卷积操作,得到第二层深
个人理解BP神经网络属于人工智能范畴,在我看来它更多的是一个用于预测的工具,尽管它的用处还不仅于此。在数学建模上,很多时候,题目提供了很多历史数据,我经常用这些历史数据,用BP神经网络训练它,利用训练好的BP神经网络,来预测接下来的未知的值。BP神经网络关于该神经网络的繁多的理论这里就不去深究了,百度一查一大把,一堆的理论反正我是看不下去的,所以这里只是讲如何把BP神经网络当成一个工具来用,当然一
文章目录一、卷积神经网络简介(一)什么是卷积神经网络(二)卷积神经网络的结构(三)为何要用卷积神经网络二、PyTorch框架简介(一)环境搭建(二)一些基本概念和应用三、应用示例(一)项目目标(二)准备样本(三)构造卷积神经网络(四)训练并保存网络(五)加载并使用网络 PyTorch框架使得构造和训练神经网络方便了许多,为简述其用法,同时也为说明卷积神经网络的原理,本文举例说明如何基于PyTo
文章目录1、2层前馈神经网络模型(1) 单个样本(2) 多个样本时的矩阵表示2、2层前馈NN的误差反向传播(BP)算法(1) 单个样本(2) 多个样本时的矩阵表示3、BP多层前馈网络 本文主要参考文献如下: 1、吴恩达《深度学习》视频。 2、周志华. 《机器学习》3.2.清华大学出版社。 3、陈明等,《MATLAB神经网络原理与实例精解》,清华大学出版社。 这部分强烈推荐吴恩达的《深度学
BP神经网络前面我们所讲的几节都是线性神经网络,都无法解决线性不可分的问题,今天我们就来学习非常非常经典的非线性多层前向网络——误差反向传播网络BP——Error Back Propagtion)。BP神经网络和前面所说的线性神经网络有什么区别呢?1.隐含层可以不唯一,这就大大提高了非线性能力。 2.隐含层节点不唯一,也就是一层可以有多节点连接。 3.隐含层的传输函数为sigmoid函数,而
BP神经网络——Error back PropagtionBP网络属于多层前向神经网络BP网络是前向神经网络的核心部分,也是整个人工神经网络体系的精华,解决非线性问题**广泛应用在分类识别,逼近,回归,压缩等领域。**matlab只是一个计算工具,我们学习需要掌握其关键的原理。BP神经网络的结构BP神经网络一般是多层的网络,与之相关的另一个概念是多层感知器(MLP)。也就是说BP神经网络具有多个
神经网络BP模型一、BP模型概述误差逆传播(ErrorBack-Propagation)神经网络模型简称为BP(Back-Propagation)网络模型。PallWerbas博士于1974年在他的博士论文中提出了误差逆传播学习算法。完整提出并被广泛接受误差逆传播学习算法的是以Rumelhart和McCelland为首的科学家小组。他们在1986年出版“ParallelDistributedPro
转载 2023-08-16 18:03:29
192阅读
  作者 | MrZhaoyx工作中需要预测一个过程的时间,就想到了使用BP神经网络来进行预测。简介BP神经网络(Back Propagation Neural Network)是一种基于BP算法的人工神经网络,其使用BP算法进行权值与阈值的调整。在20世纪80年代,几位不同的学者分别开发出了用于训练多层感知机的反向传播算法,David Rumelhart和James
  • 1
  • 2
  • 3
  • 4
  • 5