1.Attention1.1 CNNCNN的卷积操作可以提取重要特征,我觉得这也算是Attention的思想,但是CNN的卷积感受视野是局部的,需要通过叠加多层卷积区去扩大视野,然而实际情况是CNN做NLP问题就是做不深,做到2到3层卷积层就做不上去了;另外,Max Pooling直接提取数值最大的特征,也像是hard attention的思想,直接选中某个特征。Max Pooling的操作逻辑是
近年来,注意力(Attention)机制被广泛应用到基于深度学习的自然语言处理(NLP)各个任务中。随着注意力机制的深入研究,各式各样的attention被研究者们提出,如单个、多个、交互式等等。去年6月,google机器翻译团队在arXiv上的《Attention is all you need》论文受到了大家广泛关注,其中,他们提出的自注意力(self-attention)机制和多头(mult
所谓自注意力机制就是通过某种运算来直接 计算得到句子 在编码过程中每个位置上的注意力权重;然后再以权重和的形式来计算得到整个句子的隐含向量表示。自注意力机制的缺陷就是:模型在对当前位置的信息进行编码时,会过度的将注意力集中于自身的位置, 因此作者提出了通过多头注意力机制来解决这一问题。实验证明,多头注意力机制 效果优于 单头注意力,计算框架如下图 V K Q 是固定的单个值,linear
转载
2023-07-03 16:15:07
2090阅读
Multi-Head Attention(MHA):MHA是一种多头注意力模型,将注意力机制扩展到多个头,从而增强模型对于不同特征的关注度。MHA 的输入包括三个向量:查询向量(query)、键向量(key)和值向量(value)。对于一个给定的查询向量,MHA 会对键向量进行加权求和,权重由查询向量和键向量之间的相似度计算得到,然后将得到的加权和乘以值向量进行输出。在计算相似度时,常用的方法是使
转载
2023-10-06 13:39:52
630阅读
1. 多头注意力机制首先补充一下注意力和自注意力区别:自注意力有3个矩阵KQV;而注意力只有KV,可以理解为最终结果被用来当做Q了。 多头注意力机制在自注意力机制上又加了一层多头的概念,即图中从多个不同角度做attention(用不同的方式初始化即可),然后按列拼接起来。一般需要把v/k/q维度也降下来,
文章目录1. 为什么用多头注意力机制2. 什么是多头注意力机制3. 多头注意力机制模型和理论计算4. 动手实现多头注意力机制层小结练习 1. 为什么用多头注意力机制所谓自注意力机制就是通过某种运算来直接计算得到句子在编码过程中每个位置上的注意力权重;然后再以权重和的形式来计算得到整个句子的隐含向量表示。自注意力机制的缺陷就是:模型在对当前位置的信息进行编码时,会过度的将注意力集中于自身的位置,
多头注意力在实践中,当给定相同的查询、键和值的集合时,我们希望模型可以基于相应的注意力机制学习到不同的行为,然后将不同的行为作为知识组合起来,捕获序列内各种范围的依赖关系(例如,段距离依赖和长距离依赖关系)。因此,运行注意力机制组合使用查询、键和值的不同子空间表示(representation subspaces)可能时有益的为此,与其只使用单独一个注意力汇聚。我们可以用独立学习得到的h组不同的线
注意力机制 注意力机制是通过Query与Key的注意力汇聚(给定一个 Query,计算Query与 Key的相关性,然后根据Query与Key的相关性去找到最合适的 Value)实现对Value的注意力权重分配,生成最终的输出结果。计算过程:输入Query、Key、Value:阶段一:根据Query和Key计算两者之
目录如何理解使用单头注意力机制和多头注意力机制之间的联系?单头注意力机制多头注意力机制具体例子通过上述的例子进行理解具体例子输入和线性变换拆分多头独立计算注意力拼接结果总结attn_weights = torch.softmax(attn_weights, dim=-1)的含义或意义是什么?Softmax 操作的意义具体步骤代码示例总结对于上述代码的理解更具体的解释计算过程代码示例总结如何理解矩阵
文章目录多头注意力 多头注意力给定一个Query(查询)和一系列的Key-Value对一起映射出一个输出。包括下面三个关键性步骤:将Query与Key进行相似性度量将求得的相似性度量进行缩放标准化将权重与value进行加权在实践中,当给定相同的查询、键和值的集合时, 我们希望模型可以基于相同的注意力机制学习到不同的行为, 然后将不同的行为作为知识组合起来, 捕获序列内各种范围的依赖关系 (例如,
多头注意力机制(Multi-Head Attention)是Transformer架构中的核心组件,它在自然语言处理、图像识别等领域取得了显著的成果。多头注意力机制通过将输入数据划分为多个“头”,使模型能够并行捕捉输入数据中的不同特征和模式。这是一段MHA的代码:# Define a multi-head attention class
class MultiHeadAttention(nn.Mo
转载
2023-10-17 09:20:41
610阅读
Paper Reading NoteURL: https://zpascal.net/cvpr2017/Wang_Residual_Attention_Network_CVPR_2017_paper.pdfTL;DR该文章提出了一种残差注意力网络用于图像分类任务,在当时的多个分类数据集取得了SOTA结果。Dataset/Algorithm/Model/Experiment Detail数据集使用的
论文:《Squeeze-and-Excitation Networks》 论文链接:https://arxiv.org/abs/1709.01507 代码地址:https://github.com/hujie-frank/SENet PyTorch代码地址:https://github.com/miraclewkf/SENet-PyTorch1. 概述  
本文为《Attention Is All You Need》精读中的一个拓展论文- 《Attention Is All You Need》为了学到多重语意含义的表达,进行多头注意力机制的运算。不要被这个多头注意力给吓住,其实这里面就是用到了几个矩阵运算,先不用管怎么运算的,我们先宏观看一下这个注意力机制到底在做什么? 拿单头注意力机制举例: 左边的红框就是我们现在讲的部分,右图就是单头注意力机制做
多头注意力机制介绍代码实现使用pytorch函数 介绍多头自注意力机制是自注意力机制(Self-Attention)的一种扩展形式,它通过将输入数据分为多个头(Head),并对每个头进行自注意力计算,最后将多个头的结果拼接起来,得到最终的输出。使用多头自注意力可以使得模型在处理长序列数据时更加有效。代码实现多头注意力机制(Multi-Head Attention)的源码实现可以分为以下几个步骤:
最近,加州大学伯克利分校和谷歌的科研团队共同提出了一个概念上非常简单,但是功能很强大的骨架网络,该网络将自注意力机制纳入了各种计算机视觉任务,包括图像分类、目标检测和实例分割,指标都有了很大的提升,该网络叫做 BoTNet(Bottleneck Transformer)。为什么要使用 BoTNet?设计思想近年来,卷积骨架网络在计算机视觉的各个领域取得了非常大的进展,这得益于卷积能够有效捕捉图像中
摘要:ResNest主要贡献是设计了一个Split-Attention模块,可以实现跨通道注意力。通过以ResNet样式堆叠Split-Attention块,获得了一个ResNet的变体。ResNest网络保留了完整的ResNet结构,可以直接用下游任务,而不会引起额外的计算成本。ResNest在分类、FasterRCNN、DeeplabV3上都有提升。动机:著名的ResNet是针对图像分类设计的
Transformer代码详细解读 文章目录Transformer代码详细解读简介1. 数据准备1.1 词表构建1.2 数据构建2. 模型整体架构2.1 超参数设置2.2 整体架构2.2 模型训练3. 编码器(Encoder)3.1 编码器3.2 单个编码层3.3 Padding Mask4. 解码器(Decoder)4.1 解码器4.2 单个解码层4.3 Sequence Mask5. 位置编码
论文名称:ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks论文地址:https://arxiv.org/abs/1910.03151代码: https://github.com/BangguWu/ECANet 这是一篇CVPR2020上对通道注意力进行改进的文章---ECANet,ECA
顾名思义,深度残差收缩网络是由“残差网络”和“收缩”两个部分所组成的,是“残差网络”的一种改进算法。其中,残差网络在2016年获得了ImageNet图像识别竞赛的冠军,目前已成为深度学习领域的基础网络;“收缩”就是“软阈值化”,是许多信号降噪方法的核心步骤。深度残差收缩网络也是一种“注意力机制”下的深度学习算法。其软阈值化所需要的阈值,本质上是在注意力机制下设置的。在本文中,我们首先对残差网络、软