移动平均的本质是一种低通滤波。它的目的是过滤掉时间序列中的高频扰动,保留有用的低频趋势。如何从时间序列中抽取出真正的低频趋势呢?无论采取哪种移动平均算法,理论上的计算方法都相同,下面我们简要说明。同时,我们也会清晰地阐述该计算方法仅在理论上有效,而在实际应用中是无法实现的,并由此揭示产生滞后性的原因。对于简单移动平均来说,在窗口T内,过滤函数在每个时点的取值都是1/T。利用上述公式计算得到的实际上
1. 介绍      滑动平均值滤波可以去除随机噪声。测量中随机噪声的影响,使测量结果不准确,通过多次测量同一数据源,使用多点集合平均的方法得到数据一个比较合理的估计就是滑动平均值滤波。            例如第80采样点的5次平均值滤波:   
算数平均滤波需要多次采样后才能得出一个有效值,如果被检测量变化较快,多次采样后才输出一次有效值,表现就是系统反应迟钝。将当前采样值与之前连续的历史采样值进行平均,这样每次采样结束即可得出有效值。因为参与计算的历史值个数固定且内容不断前移覆盖更新,类似滑动的数据块窗口,因此成为滑动平均滤波算法。 假如窗口为6,即每次使用最近5个历史值与当前最新值求算数平均值,输出一个有效值;下个周期再覆盖最早时间的
上一篇介绍了数字通信系统中ASK解调技术的FPGA实现。在ASK解调系统中,需要对低通滤波器提取出的基带包络信号做判决输出,本文将介绍其中涉及到的判决门限问题,以及在FPGA中的实现方法。主要介绍了如何使用滑动平均滤波器求得信号均值。判决门限由上一篇可知,LPF输出的基带包络信号包含有直流分量。2ASK信号只有2种电平状态,因此只需要将基带波形的直流分量作为判决门限即可。4ASK信号有4种电平状态
前言人生如逆旅,我亦是行人。今天分享一个在 MATLAB 上生成C算法文件,并将其移植到 keil5上,运行至 STM32 单片机,一个很有用的方法。准备工作:已安装 MATLAB 的软件(注意:matlab 安装路径不可以有空格的问题) Keil IDE 开发环境STM32CubeMX STM32H750VBT6 开发板需要移植的头文件路径:F:\MATLAB\extern\include(在我
转载 2024-08-12 13:06:53
634阅读
1.限幅滤波算法(程序判断滤波算法)方法解析:根据经验判断,确定两次采样允许的最大偏差值(设定为A),每次检测到新值时判断:如果本次值与上次值之差<=A,则本次值有效,如果本次值与上次值只差>A,则本次值无效,放弃本次值,用上次值代替本次值。优点:能有效克服因偶然因素引起的脉冲干扰缺点:无法抑制那种周期性的干扰,平滑度差#define A 10 char value; char
题目:写一个函数, 假设给定一个float型一维数组,里面有X(X> = 20)组数据,先将数组里的X组数据从大到小排序,然后去掉前面最大的3组后面最小的3组,然后把中间的X-6组数据求和后再求平均值,最后将这个平均值return出来。 要求: 1,注释有没有无所谓,但用到的参数定义的函数名要简明,程序长短不限,但越简明越好。 2,不能将程序直接写入到main函数里,将所实现的功能封装成
Kalman Filter是一个高效的递归滤波器,它可以实现从一系列的噪声测量中,估 计动态系统的状态。广泛应用于包含Radar、计算机视觉在内的等工程应用领域,在控制理论控制系统工程中也是一个非常重要的课题。连同线性均方规划,卡尔曼滤波器可以用于解决LQG(Linear-quadratic-Gaussian control)问题。卡尔曼滤波器,线性均方归化及线性均方高斯控制器,是大部分控制领域
/// ///滑动平均滤波算法(递推平均滤波法) /// /// /// GN为数组value_buf[]的元素个数,该函数主要被调用,利用参数的数组传值 /// private const int GN = 12; private int filterPtr = 0; private b...
转载 2014-11-28 20:31:00
1149阅读
2评论
题目要求编写程序,实现如下目标:综合应用while循环移位寄存器,以随机数方式模拟单路5~10V之间电压信号采集,并将当前采集数据与最近4次采集数据进行算术平均,作为采集结果的最终可用数据结果。可根据个人理解自主设计程序前面板,但需要尽可能模拟实用软件界面风格。题目分析根据题目要求,选择While循环结构,同时选择移位寄存器用来传递前几次数据。首先题目要求采用随机数方式模拟单路5~10V之间电压
均值滤波 均值滤波的计算非常简单,将图像像素点灰度记录在数组中,然后设置方框半径的值,然后将方框中的所有点的像素求和取平均,得到的结果就是均值滤波后对应像素点的灰度值。  优点:  计算很快而且简单  从算法可以看出,只是求了平均,并没有很复杂的计算  缺点:  得到的图像很模糊  当方框的半径越大,得到的图像中那些变化较大的地方(边缘)
转载 2024-04-03 14:08:01
188阅读
matlab - 信号平滑、移动平均滤波对信号进行平滑操作的重要性不言而喻1.信号提取matlab内置了一个这样的数据:某个地方一个月内的温度变化数据,1小时测量一次,所以总数据量是24*31。可以以这个数据为例子,探究一些数据平滑的方法。该数据如下:clear all close all load bostemp days = (1:31*24)/24; plot(days, tempC) ax
均值滤波定义:均值滤波是典型的线性滤波算法,它是指在图像上对目标像素给一个模板,该模板包括了其周围的临近像素(以目标像素为中心的周围8个像素,构成一个滤波模板,即包括目标像素本身),再用模板中的全体像素的平均值来代替原来像素值。特点:在图像去噪的同时不能很好的保留细节,会使图像明显变模糊。不适用于椒盐噪声。代码:# 均值滤波 img_mean = cv2.blur(img, (25,25))中值滤
使用中值滤波原理过滤异常数据最近有一个程序需要做一些数据分析,遇见一个求平均值的需求。数据序列由传感器输出类似如下:[10,12,11,25,9,10,9,45,13,12,10,11,78,12,12,13,10,9]。在这个序列中很明显的25,45,78都是要远远大于其他一些数据的,而我们认为3个数据应该是异常数据。如果是求平均值,这三个大数会拉高平均值,会让我们的结果有一定的偏差。如果数据序
图像平滑从信号处理的角度看就是去除其中的高频信息,保留低频信息。因此我们可以对图像实施低通滤波。低通滤波可以去除图像中的噪音,模糊图像(噪音是图像中变化比较大的区域,也就是高频信息)。而高通滤波能够提取图像的边缘(边缘也是高频信息集中的区域)。根据滤波器的不同又可以分为均值滤波,高斯加权滤波,中值滤波, 双边滤波均值滤波平均滤波是将一个m*n(m, n为奇数)大小的kernel放在图像上,中间像
# Python滑动平均滤波:基础与应用 滑动平均滤波是一种广泛应用于信号处理和数据分析的技术,旨在减少数据中的波动,从而提取出更为显著的趋势或特征。本文将介绍滑动平均滤波的基本概念,相关的Python代码示例,以及如何在实际应用中实现这一技术。 ## 什么是滑动平均滤波滑动平均是一种计算序列数据任意时刻的平滑值的方法。其核心思想是通过对当前位置及其周围数据点进行平均来减小噪音影响,从而
原创 9月前
130阅读
作者:AtsushiSakai,日本机器人工程师,从事自动驾驶技术开发,精通C++、ROS、MATLAB、Python、VimRobotics。译者:弯月,责编:郭芮本文是一些机器人算法(特别是自动导航算法)的Python代码合集。其主要特点有以下三点:选择了在实践中广泛应用的算法;依赖最少;容易阅读,容易理解每个算法的基本思想。希望阅读本文后能对你有所帮助。前排友情提示,文章较长,建议收藏后再
图像处理系列-均值滤波中值滤波1.均值滤波与中值滤波介绍在经典书籍《数字图像处理第三版-冈萨雷斯》中介绍了滤波相关概念,并详细讲解了均值滤波与中值滤波的原理。如果本文有不详尽之处,可查阅本书P93平滑空间滤波部分。宏观上,让我们了解均值滤波中值滤波在图像处理中的位置。在数字图像处理中,滤波是很重要的一部分,均值滤波中值滤波是都属于空间滤波(对于某一像素点,以该点为中心,通过对该像素点邻域部分
自动驾驶 - 滤波算法目前比较常用的滤波算法有:1. 平均值滤波算法1.1. 算法介绍平均值滤波算法是比较常用,也比较简单的滤波算法。在滤波时,将N个周期的采样值计算平均值,算法非常简单。当N取值较大时,滤波后的信号比较平滑,但是灵敏度差;相反N取值较小时,滤波平滑效果差,但灵敏度好。优点:算法简单,对周期性干扰有良好的抑制作用,平滑度高,适用于高频振动的系统。缺点:对异常信号的抑制作用差,无法消
文章目录第五章 图像复原与重建引言5.1图像退化/复原过程的模型退化/复原模型:5.2噪声模型噪声频率特性:白噪声:高斯噪声:瑞利噪声:爱尔兰(伽马)噪声:指数噪声:均匀噪声:脉冲(椒盐)噪声:周期噪声:5.3空间滤波算术均值滤波器:几何均值滤波器:谐波均值滤波器逆谐波均值滤波器中值滤波器:最大值最小值滤波器中点滤波器修正的阿尔法均值滤波器自适应滤波器自适应中值滤波器5.4 用频率域滤波消除周
  • 1
  • 2
  • 3
  • 4
  • 5