MongoDB是一个高性能可扩展基于文档的NoSQL数据库,高性能也需要在多个关键维度的配置,包括硬件、应用模式、模式设计、索引、磁盘I/O等。存储引擎WiredTiger是3.0以后的默认存储引擎,细粒度的并发控制和数据压缩提供了更高的性能和存储效率。3.0以前默认的MMAPv1也提高了性能。在MongoDB复制集中可以组合多钟存储引擎,各个实例实现不同的应用需求。硬件MongoDB初衷是采用水
转载
2023-06-04 16:07:11
143阅读
mongodb3.0 性能测试报告 一mongodb3.0 性能测试报告 二 mongodb3.0 性能测试报告 三 测试环境: 服务器:X86 pcserver 共6台  
转载
2023-05-31 16:13:17
601阅读
如果你的应用使用的是MongoDB,那么你就有可能需要关注它的性能问题,一般访问数据的方式,硬件,数据库连接数会引起性能问题。索引建立不合适,数据结构不合理也会限制性能,在后面会讲到这些如何影响数据库锁也有可能已经到达数据库的最大性能,需要进行扩容,对硬件升级,比如需要合适大小的内存容量。这部分可以关注内存和MMAPv1 存储引擎有时候性能问题可能只是暂时的,请求突然增加引起。这会在数据库连接数部
转载
2023-08-15 18:08:32
136阅读
一、MongoDB聚合管道(Aggregation Pilpeline)使用聚合管道可以对集合中的文档进行变换和组合。主要功能:表的关联查询、数据统计二、aggregate 管道操作符与表达式管道操作符:sql 和 nosql 对比:管道表达式:管道操作符作为“键”,所对应的“值”叫做管道表达式。 例如{$match:{status:"A"}}, $match 称为管道操作符, 而 st
转载
2023-05-26 19:59:51
111阅读
单点 AVGMAXMinInsert12463239601170Updade719789554752Select17675192338566delete728988001040insert : update : select : delete = 1:1:1:12280 : 2179 :&nb
转载
2023-05-21 18:40:23
58阅读
一,mongodb聚合介绍 db.collection.aggregate()是基于数据处理的聚合管道,每个文档通过一个由多个阶段(stage)组成的管道,可以对每个阶段的管道进行分组、过滤等功能,然后经过一系列的处理,输出相应的结果。通过这张图,可以了解Aggregate处理的过程。1、db.collection.aggregate() 可以用
转载
2023-08-30 15:56:20
61阅读
对MongoDB和TiDB的系统比较一、MongoDB1、简介MongoDB 是一个基于分布式文件存储的文档数据库,属于NoSQL数据库,是非关系数据库当中功能最丰富,最像关系数据库的。支持多种查询语言,支持对数据建立任何属性的索引,使用高效的二进制数据存储,自动处理碎片,高性能、易部署、易使用,存储数据非常方便。2、设计与使用原理“面向集合”和“模式自由”:数据分组被储存在数据集中,称为而一个集
转载
2023-07-14 15:18:15
233阅读
Mongodb-aggregate在工作中经常遇到一些mongodb的聚合操作,和mysql对比起来,mongo存储的可以是复杂的类型,比如数组,字典等mysql不善于处理的文档型结构,但是mongo的聚合操作比mysql复杂。mysql与mongo聚合类比SQL 操作/函数 mongodb聚合操作where$matchgroup by$grouphaving$matchs
转载
2023-09-19 08:38:51
264阅读
简介MongoDB 中聚合(aggregate)主要用于处理数据(诸如统计平均值,求和等),并返回计算后的数据结果。
db.collection.aggregate()方法是基于数据处理的聚合管道,每个文档通过一个由多个阶段(stage)组成的管道,可以对每个阶段的管道进行分组、过滤等功能,然后经过一系列的处理,输出相应的结果。可以多个管道,能方便的进行数据的处理。聚合效率非常高。每个阶段管道限制
转载
2023-05-20 13:45:51
427阅读
MongoDB1. 入门1.1 介绍MongoDB是一个开源、高性能、无模式的文档型数据库,设计的初衷是用于简化开发和方便扩展,是NoSql数据库产品中最像关系型数据库的非关系型数据库。它支持的数据结构非常松散,是类似Json的Bson格式(二进制的Json),因此可以存储比较复杂的数据类型,且保持相当高的灵活性。Mongo最大的特点是它支持的查询语言非常强大,其语法有点类似于面向对象的查询语言,
目录1、聚合简介2、简单练习3、聚合操作3.1 求和-$sum3.2 过滤-$match3.3 最大值-$max3.4 最小值-$min3.5 平均值-$avg3.6 统计结果返回数组-$push3.7 数组字段拆分-$unwind3.8 管道操作3.8.1、聚合投影约束-$project3.8.2、字符串处理-$project3.8.3、算数运算-$project3.9 多表关联-lookup1
转载
2023-08-20 22:33:15
61阅读
一、特性 1、Aggregation有几个核心的特性: 1)支持多种stages 2)可以将计算结果保存在collection中,在sharding环境中仍然适用,而且在output之前可以对结果数据进行“修剪”;当然可以将结果数据保存在内存(inline)并返回cursor,便于客户端访问结果数据。 
转载
2023-07-20 20:14:04
32阅读
mongodb目前在业界的使用一般可分为两种架构:主从复制集和分片复制集集群。因为分片复制集包含了主从复制集的功能,所以后面将以分片复制集为案例做说明。伴随数据量的增长和业务压力的增大,经常有接收到mongodb分片集群的性能告警邮件。我所维护的几套分片集群有时一天能收到200来封告警邮件,不胜其烦。告警邮件大致分为三类:1. cpu 负载过高。cpu load average 值超过30,cpu
转载
2023-07-10 15:17:16
146阅读
目录MongoDB介绍MongoDB技术优势MongoDB安装Mongo shell使用安全认证模式启动MongoDB文档操作SpringBoot整合MongoDB创建实体类添加文档查询文档更新文档删除文档SpringBoot实现聚合操作 MongoDB介绍MongoDB是一个文档数据库(以JSON为数据模型),由C++语言编写。MongoDB的数据是存储在硬盘上的,只不过需要操作的数据会被加载
转载
2023-05-26 20:00:21
133阅读
关于作者前滴滴出行技术专家,现任OPPO文档数据库mongodb负责人,负责oppo千万级峰值TPS/十万亿级数据量文档数据库mongodb研发和运维工作,一直专注于分布式缓存、高性能服务端、数据库、中间件等相关研发。1.背景线上某集群峰值TPS超过100万/秒左右(主要为写流量,读流量很低),峰值tps几乎已经到达集群上限,同时平均时延也超过100ms,随着读写流量的进一步增加,时延抖动严重影响
似乎数据库都提供explain功能,利用其进行MongoDB慢查询实践分析前先准备实践数据:
转载
2023-06-01 22:52:23
137阅读
MongoDB性能测试(Windows环境)一、测试环境Server硬件环境:Client硬件环境:MongoDB版本:mongodb 5.0.14二、性能测试2-1 测试方式一测试json长度:251个字符实验目的:往MongoDB中插入10000条json,统计花费的时间(即QPS)条件:连接-->插入一条-->断开,三个过程算一轮插入实验次序插入数量花费时间QPS第一次10000
转载
2023-06-30 19:14:33
266阅读
MongoDB 是目前炙手可热的 NoSQL 文档型数据库,它提供的一些特性很棒:如自动 failover 机制,自动 sharding,无模式 schemaless,大部分情况下性能也很棒。但是薄荷在深入使用 MongoDB 过程中,遇到了不少问题,下面总结几个我们遇到的坑。特别申明:我们目前用的 MongoDB 版本是 2.4.10,曾经升级到 MongoDB 2.6.0 版本,问题依然存在
转载
2023-10-18 20:29:45
270阅读
mongodb读写性能分析标签(空格分隔): Mongodb【写】可能影响插入数据性能评估:服务器硬件、索引(建立过多索引)、插入时是否指定_id、单机or分片、是否副本集、是否安全写入数据库版本:v2.6插入样本数据大小:约500byte测试脚本:如下for(var i =1; i <= 100000; i++){
db.ActivityResultShard.insert({
转载
2023-08-30 15:43:14
69阅读
索引是用来加快查询速度的,事物都有双面性的,同时在每次插入、更新和删除操作时都会产生额外的开销。索引有时并不能解决查询慢的问题,一般来说,返回集合中一半以上的结果,全表扫描要比查询索引更高效些。创建太多索引,会导致插入非常慢,同时还会占用很大空间。可以通过一些工具来分析查询的效率来进一步优化索引。
一、MongoDB自带工具explain
使用explain命令返回查询使用的索引情