在本文中,在数据科学学习之旅中,我经常处理日常工作中的时间序列数据集,并据此做出预测。

我将通过以下步骤:

探索性数据分析(EDA)

  • 问题定义(我们要解决什么)
  • 变量识别(我们拥有什么数据)
  • 单变量分析(了解数据集中的每个字段)
  • 多元分析(了解不同领域和目标之间的相互作用)
  • 缺失值处理
  • 离群值处理
  • 变量转换

预测建模

  • LSTM
  • XGBoost

问题定义

我们在两个不同的表中提供了商店的以下信息:

  • 商店:每个商店的ID
  • 销售:特定日期的营业额(我们的目标变量)
  • 客户:特定日期的客户数量
  • StateHoliday:假日
  • SchoolHoliday:学校假期
  • StoreType:4个不同的商店:a,b,c,d
  • CompetitionDistance:到最近的竞争对手商店的距离(以米为单位)
  • CompetitionOpenSince [月/年]:提供最近的竞争对手开放的大致年份和月份
  • 促销:当天促销与否
  • Promo2:Promo2是某些商店的连续和连续促销:0 =商店不参与,1 =商店正在参与
  • PromoInterval:描述促销启动的连续区间,并指定重新开始促销的月份。

利用所有这些信息,我们预测未来6周的销售量。


# 让我们导入EDA所需的库:

import numpy as np # 线性代数
import pandas as pd # 数据处理,CSV文件I / O导入(例如pd.read_csv)
import matplotlib.pyplot as plt
import seaborn as sns
from datetime import datetime
plt.style.use("ggplot") # 绘图


#导入训练和测试文件:
train\_df = pd.read\_csv("../Data/train.csv")
test\_df = pd.read\_csv("../Data/test.csv")


#文件中有多少数据:
print("在训练集中,我们有", train\_df.shape\[0\], "个观察值和", train\_df.shape\[1\], 列/变量。")
print("在测试集中,我们有", test\_df.shape\[0\], "个观察值和", test\_df.shape\[1\], "列/变量。")
print("在商店集中,我们有", store\_df.shape\[0\], "个观察值和", store\_df.shape\[1\], "列/变量。")


在训练集中,我们有1017209个观察值和9列/变量。
在测试集中,我们有41088个观测值和8列/变量。
在商店集中,我们有1115个观察值和10列/变量。

首先让我们清理  训练数据集。


#查看数据 train\_df.head().append(train\_df.tail()) #显示前5行。


Python对商店数据进行lstm和xgboost销售量时间序列建模预测分析|附代码数据_神经网络


train_df.isnull().all() Out\[5\]: Store            False DayOfWeek        False Date             False Sales            False Customers        False Open             False Promo            False StateHoliday     False SchoolHoliday    False dtype: bool


让我们从第一个变量开始->  销售量


opened\_sales = (train\_df\[(train_df.Open == 1) #如果商店开业
opened_sales.Sales.describe()
Out\[6\]:

count 422307.000000
mean 6951.782199
std 3101.768685
min 133.000000
25% 4853.000000
50% 6367.000000
75% 8355.000000
max 41551.000000
Name: Sales, dtype: float64


<matplotlib.axes._subplots.AxesSubplot at 0x7f7c38fa6588>


Python对商店数据进行lstm和xgboost销售量时间序列建模预测分析|附代码数据_lstm_02

看一下顾客变量


In \[9\]:

train_df.Customers.describe()
Out\[9\]:

count 1.017209e+06
mean 6.331459e+02
std 4.644117e+02
min 0.000000e+00
25% 4.050000e+02
50% 6.090000e+02
75% 8.370000e+02
max 7.388000e+03
Name: Customers, dtype: float64

<matplotlib.axes._subplots.AxesSubplot at 0x7f7c3565d240>


Python对商店数据进行lstm和xgboost销售量时间序列建模预测分析|附代码数据_神经网络_03


train\_df\[(train\_df.Customers > 6000)\]


Python对商店数据进行lstm和xgboost销售量时间序列建模预测分析|附代码数据_lstm_04

​我们看一下**假期** 变量。​


train\_df.StateHoliday.value\_counts()

0 855087
0 131072
a 20260
b 6690
c 4100
Name: StateHoliday, dtype: int64

train\_df.StateHoliday\_cat.count()

1017209

train_df.tail()


Python对商店数据进行lstm和xgboost销售量时间序列建模预测分析|附代码数据_神经网络_05


train_df.isnull().all() #检查缺失
Out\[18\]:

Store False
DayOfWeek False
Date False
Sales False
Customers False
Open False
Promo False
SchoolHoliday False
StateHoliday_cat False
dtype: bool


让我们继续进行商店分析


store\_df.head().append(store\_df.tail())


Python对商店数据进行lstm和xgboost销售量时间序列建模预测分析|附代码数据_数据_06


#缺失数据:


Store 0.000000
StoreType 0.000000
Assortment 0.000000
CompetitionDistance 0.269058
CompetitionOpenSinceMonth 31.748879
CompetitionOpenSinceYear 31.748879
Promo2 0.000000
Promo2SinceWeek 48.789238
Promo2SinceYear 48.789238
PromoInterval 48.789238
dtype: float64
In \[21\]:

让我们从缺失的数据开始。第一个是 CompetitionDistance

store_df.CompetitionDistance.plot.box()


让我看看异常值,因此我们可以在均值和中位数之间进行选择来填充NaN

Python对商店数据进行lstm和xgboost销售量时间序列建模预测分析|附代码数据_数据_07


点击标题查阅往期内容

Python对商店数据进行lstm和xgboost销售量时间序列建模预测分析|附代码数据_lstm_08

​Python中利用长短期记忆模型LSTM进行时间序列预测分析 - 预测电力负荷数据​

左右滑动查看更多

01

Python对商店数据进行lstm和xgboost销售量时间序列建模预测分析|附代码数据_机器学习_09

02

Python对商店数据进行lstm和xgboost销售量时间序列建模预测分析|附代码数据_python_10

03

Python对商店数据进行lstm和xgboost销售量时间序列建模预测分析|附代码数据_python_11

04

Python对商店数据进行lstm和xgboost销售量时间序列建模预测分析|附代码数据_神经网络_12


缺少数据,因为商店没有竞争。 因此,我建议用零填充缺失的值。


store_df\["CompetitionOpenSinceMonth"\].fillna(0, inplace = True)


让我们看一下促销活动。


store_df.groupby(by = "Promo2", axis = 0).count()


Python对商店数据进行lstm和xgboost销售量时间序列建模预测分析|附代码数据_python_13

如果未进行促销,则应将“促销”中的NaN替换为零 

我们合并商店数据和训练集数据,然后继续进行分析。

第一,让我们按销售量、客户等比较商店。


f, ax = plt.subplots(2, 3, figsize = (20,10)) plt.subplots_adjust(hspace = 0.3) plt.show()


Python对商店数据进行lstm和xgboost销售量时间序列建模预测分析|附代码数据_数据_14

从图中可以看出,StoreType A拥有最多的商店,销售和客户。但是,StoreType D的平均每位客户平均支出最高。只有17家商店的StoreType B拥有最多的平均顾客。

我们逐年查看趋势。


sns.factorplot(data = train\_store\_df, 
# 我们可以看到季节性,但看不到趋势。 该销售额每年保持不变


<seaborn.axisgrid.FacetGrid at 0x7f7c350e0c50>


Python对商店数据进行lstm和xgboost销售量时间序列建模预测分析|附代码数据_数据_15

我们看一下相关图。


"CompetitionOpenSinceMonth", "CompetitionOpenSinceYear", "Promo2

<matplotlib.axes._subplots.AxesSubplot at 0x7f7c33d79c18>


Python对商店数据进行lstm和xgboost销售量时间序列建模预测分析|附代码数据_神经网络_16

我们可以得到相关性:

  • 客户与销售(0.82)
  • 促销与销售(0,82)
  • 平均顾客销量 vs促销(0,28)
  • 商店类别 vs 平均顾客销量 (0,44)

我的分析结论:

  • 商店类别 A拥有最多的销售和顾客。
  • 商店类别 B的每位客户平均销售额最低。因此,我认为客户只为小商品而来。
  • 商店类别 D的购物车数量最多。
  • 促销仅在工作日进行。
  • 客户倾向于在星期一(促销)和星期日(没有促销)购买更多商品。
  • 我看不到任何年度趋势。仅季节性模式。

Python对商店数据进行lstm和xgboost销售量时间序列建模预测分析|附代码数据_lstm_17