import torch
import torch.nn as nn
def INF(B, H, W):
return -torch.diag(torch.tensor(float("inf")).repeat(H), 0).unsqueeze(0).repeat(B * W, 1, 1)
class CrissCrossAttention(nn.Module):
""" Criss-Cross Attention Module"""
def __init__(self, in_dim):
super(CrissCrossAttention, self).__init__()
self.query_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim // 8, kernel_size=1)
self.key_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim // 8, kernel_size=1)
self.value_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim, kernel_size=1)
self.softmax = nn.Softmax(dim=3)
self.INF = INF
self.gamma = nn.Parameter(torch.zeros(1))
def forward(self, x):
m_batchsize, _, height, width = x.size()
proj_query = self.query_conv(x)
proj_query_H = proj_query.permute(0, 3, 1, 2).contiguous().view(m_batchsize * width, -1, height).permute(0, 2, 1)
proj_query_W = proj_query.permute(0, 2, 1, 3).contiguous().view(m_batchsize * height, -1, width).permute(0, 2, 1)
proj_key = self.key_conv(x)
proj_key_H = proj_key.permute(0, 3, 1, 2).contiguous().view(m_batchsize * width, -1, height)
proj_key_W = proj_key.permute(0, 2, 1, 3).contiguous().view(m_batchsize * height, -1, width)
proj_value = self.value_conv(x)
proj_value_H = proj_value.permute(0, 3, 1, 2).contiguous().view(m_batchsize * width, -1, height)
proj_value_W = proj_value.permute(0, 2, 1, 3).contiguous().view(m_batchsize * height, -1, width)
energy_H = (torch.bmm(proj_query_H, proj_key_H) + self.INF(m_batchsize, height, width)).view(m_batchsize, width,
height, height).permute(0, 2, 1, 3)
energy_W = torch.bmm(proj_query_W, proj_key_W).view(m_batchsize, height, width, width)
concate = self.softmax(torch.cat([energy_H, energy_W], 3))
att_H = concate[:, :, :, 0:height].permute(0, 2, 1, 3).contiguous().view(m_batchsize * width, height, height)
# print(concate)
# print(att_H)
att_W = concate[:, :, :, height:height + width].contiguous().view(m_batchsize * height, width, width)
out_H = torch.bmm(proj_value_H, att_H.permute(0, 2, 1)).view(m_batchsize, width, -1, height).permute(0, 2, 3, 1)
out_W = torch.bmm(proj_value_W, att_W.permute(0, 2, 1)).view(m_batchsize, height, -1, width).permute(0, 2, 1, 3)
# print(out_H.size(),out_W.size())
return self.gamma * (out_H + out_W) + x
if __name__=='__main__':
model = CrissCrossAttention(16)
print(model)
input = torch.randn(1, 16, 64, 64)
out = model(input)
print(out.shape)