一、函数

函数是指将一组语句的集合通过一个名字(函数名)封装起来,要想执行这个函数,只需调用其函数名即可

特性:


  1. 减少重复代码
  2. 使程序变的可扩展
  3. 使程序变得易维护

1.定义

def 函数名(参数):        
...
函数体
...
返回值


函数的定义主要有如下要点:


  • def:表示函数的关键字
  • 函数名:函数的名称,可根据函数名调用函数
  • 函数体:函数中进行一系列的逻辑计算
  • 参数:为函数体提供数据
  • 返回值:当函数执行完毕后,可以给调用者返回数据。

2.参数

函数的有三种不同的参数:


  • 普通参数(也称为位置参数)
  • 默认参数
  • 动态参数

普通参数

#定义函数
#n是函数name的形式参数,简称:形参

def name(n):
print(n) # jack

#执行函数
#'jack'是函数name的实际参数,简称:实参
name('jack')


默认参数

def func(name, age = 18):
print("%s:%s"%(name,age))

# 指定参数
func('jack', 19) # 上面输出jack:19
# 使用默认参数
func('jack') # 上面输出jack:18

注:默认参数需要放在参数列表最后


动态参数(*args) 

def func(*args):
print(args)

# 执行方式一
func(11,22,33,55,66) # 上面输出(11, 22, 33, 55, 66)

# 执行方式二
li = [11,22,33,55,66] # 上面输出(11, 22, 33, 55, 66)
func(*li)


动态参数(**kwargs) 

def func(**kwargs):
print(kwargs)

# 执行方式一
func(name='jack',age=18) # 上面输出{'name': 'jack', 'age': 18}

# 执行方式二
li = {'name':'jack', 'age':18, 'job':'pythoner'}
func(**li) # 上面输出{'name': 'jack', 'age': 18, 'job': 'pythoner'}


参数顺序:位置参数、默认参数(即关键字参数,形参中如果默认参数后面有可变位置参数,实参中,这个默认参数不能写成关键字参数样式,只能写一个值,即位置参数的样子)、可变位置参数、可变关键字参数。

def hi(a,*args,**kwargs):
print(a,type(a)) # 11 <class 'int'>
print(args,type(args)) # (22, 33) <class 'tuple'>
print(kwargs,type(kwargs)) # {'k1': 'jack', 'k2': 'tom'} <class 'dict'>
hi(11,22,33,k1='jack',k2='tom')


3.返回值

函数外部的代码要想获取函数的执行结果,就可以在函数里用return语句把结果返回。

def stu_register(name, age, course='python' ,country='CN'):
print("----注册学生信息------")
print("姓名:", name)
print("age:", age)
print("国籍:", country)
print("课程:", course)
if age > 22:
return False
else:
return True

registriation_status = stu_register("老王",22,course="PY全栈开发",country='JP')

if registriation_status:
print("注册成功")
else:
print("too old to be a student.")


注意:


  • 函数在执行过程中只要遇到return语句,就会停止执行并返回结果,所以也可以理解为 return 语句代表着函数的结束
  • 如果未在函数中指定return,那这个函数的返回值为None

4.全局、局部变量

在函数中定义的变量称为局部变量,在程序的一开始定义的变量称为全局变量。

全局变量作用域是整个程序,局部变量作用域是定义该变量的函数。

当全局变量与局部变量同名时,在定义局部变量的函数内,局部变量起作用;在其它地方全局变量起作用。

全局变量在函数里可以随便调用,但要修改就必须用 global 声明 

# 全局变量
P = 'jack'

def name():
global P # 声明修改全局变量
P = 'jenny' # 局部变量
print(P) # jenny

def name2():
print(P) # jenny

name()
name2() # jenny


二、内置函数

Python的内置函数有许多,如下图:

Python【第四篇】函数、内置函数、递归、装饰器、生成器和迭代器_局部变量

# 匿名函数,冒号前面是形参,冒号后面是函数体,并将结果return到函数调用处
f = lambda a, b: a + b
print(f(2, 3)) # 5

# abs() 取绝对值
print(abs(-111)) # 111

# all() 循环可迭代对象的每个元素,都为真则返回True,否则返回假
# 0,None ,"",[],(),{} 是假的
print(all([11, 22])) # True

# any 有一个为真,全部都为真
print(any([0, 0, None])) # False

# bin 将十进制转换成2进制
# oct() hex()
print(bin(11)) # 0b1011

# chr() 找到数字对应的ascii码
# ord() ascii码对应的数字
# chr ord 只适用于ascii码
print(chr(65)) # A
print(ord('A')) # 65

# divmod 返回除法的(值,余数)
print(divmod(10, 3)) # (3,1)

# eval 计算器的功能 返回结果
print(eval('a+60', {'a': 90})) # 150

# exec,执行python代码,没有返回值
exec("for i in range(5):print(i)") # 直接循环输出0,1,2,3,4


# filter(函数,可迭代的对象)
# 循环可以迭代的对象,传入函数中执行,如果不符合就过滤
def fun(s): # 定义判断一个数是否是偶数的函数
if s % 2 == 0:
return True
else:
return False

ret = filter(fun, [1, 2, 3, 4, 5, 6, 7, 8])
for i in ret:
print(i) # 打印出2,4,6,8

# 用匿名函数改写一下
ret1 = filter(lambda x: x % 2 == 0, [1, 2, 3, 4, 5, 6, 7, 8])
for i in ret1:
print(i) # 2,4,6,8

# map将传入的函数依次作用到序列的每个元素,并把结果作为新的Iterator返回
ret = map(lambda x: x + 100, [1, 2, 3])
for i in ret:
print(i) # 101,102,103

# globals() 获取当前文件的所有全局变量
# locals() 获取当前文件的所有局部变量
# hash() 获取哈希值
# isinstance 看某个对象是不是某个类创建的

# iter() 创建一个可以被迭代的对象 next()取下一个值
k = iter([1, 2, 3, 4])
print(next(k)) # 1

# pow() 求指数
print(pow(2, 10)) # 1024

# round() 四舍五入
# zip
l1 = [1, 2, 3, 4]
l2 = ['a', 'b', 'c', 'd']
k = zip(l1, l2)
for i in k:
print(i) # 打印出(1,a),(2,b)....
a = [1, 2, 3, 4, 5]
b = ['aaa', 'bbb', 'ccc', 'ddd']
c = [111, 222, 333, 444]
for i in zip(a, b, c):
print(i)
# (1, 'aaa', 111)
# (2, 'bbb', 222)
# (3, 'ccc', 333)
# (4, 'ddd', 444)

for i, j, k in zip(a, b, c):
print(i, j, k)
# 1 aaa 111
# 2 bbb 222
# 3 ccc 333
# 4 ddd 444

# zip应用
for m, n in zip(title_list, content_list): # 把标题和图片对个对应
print('正在下载>>>>>:' + m, n)


三、递归

递归算法是一种直接或者间接地调用自身算法的过程。在计算机编写程序中,递归算法对解决一大类问题是十分有效的,它往往使算法的描述简洁而且易于理解。  递归算法解决问题的特点:


  • 递归就是在过程或函数里调用自身。
  • 在使用递归策略时,必须有一个明确的递归结束条件,称为递归出口。
  • 递归算法解题通常显得很简洁,但递归算法解题的运行效率较低。所以一般不提倡用递归算法设计程序。
  • 在​​递归调用​​​的过程当中系统为每一层的返回点、局部量等开辟了栈来存储。递归次数过多容易造成​​栈溢出​​等。所以一般不提倡用递归算法设计程序。

用递归写一个阶乘函数 f(n)算出n的阶乘

def f(n):
if n==0: # n=0的话直接返回空,对用户输入的零进行判断
return None
elif 1==n: # n=1的话就不再递归
return n
else:
return n*f(n-1) # 递归在执行f(n-1) 直到f(1)
print(f(5)) # 120
'''
f(5)的执行过程如下
===> f(5)
===> 5 * f(4)
===> 5 * (4 * f(3))
===> 5 * (4 * (3 * f(2)))
===> 5 * (4 * (3 * (2 * f(1))))
===> 5 * (4 * (3 * (2 * 1)))
===> 5 * (4 * (3 * 2))
===> 5 * (4 * 6)
===> 5 * 24
===> 120
'''


利用函数编写如下数列:

斐波那契数列指的是这样一个数列 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368...

用递归获取斐波那契数列中的第10个数

def fun(n): # fun(10)即可计算第十个斐波拉数
if 1==n : # 直接定义前面两个数为 0 ,1,如果输入的n为1,2的话直接就返回了
return 0
elif 2==n:
return 1
else:
return fun(n-1)+fun(n-2) #如果输入的不是1,2则进行递归出来计算他前面两个数的和

'''
fun(5)的执行过程如下(fun(10)的结果为34)
===> fun(5)
===> fun(4)+fun(3)
===> fun(3)+fun(2) + fun(2)+fun(1)
===> fun(2)+fun(1)+fun(2)+fun(2)+fun(1)
===> 1+0+1+1+1+0
===> 3
'''


四、装饰器

本质是函数,装饰其它函数,为其它函数添加附加功能,原则:


  • 不能修改被装饰函数的源代码
  • 不能修改被装饰的函数的调用方式

装饰器对被装饰的函数是透明的,即:被装饰的函数感知不到装饰器的存在,因为没改函数的代码,运行方式也没变

装饰器执行顺序

def login(func): # 1,3
def inner(arg): # 4,7
print('yanzheng') # 8
func(arg) # 9
return inner # 5

@login # 2,10
def tv(name):
print('welcom %s' %name) # 11

tv('wgy') # 6


统计函数执行时间

import time
def timmer(func):
def warpper(*args, **kwargs):
start_time = time.time()
func()
stop_time = time.time()
print('the func run time is %s' %(stop_time-start_time))
return warpper

@timmer
def test1():
time.sleep(1)
print('in the test1')
test1()


五、生成器和迭代器

通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。要创建一个generator,有很多种方法。

第一种方法很简单,只要把一个列表生成式的​​[]​​​改成​​(),​​就创建了一个generator:

b = (i*2 for i in range(3)) # 列表生成式的[]改为(),就变成了生成器
print(b)
for i in b:
print(i)
'''
<generator object <genexpr> at 0x00000000021DE8E0>
0
2
4
'''


通过函数写生成器

函数中加yield(暂停),表示可以将函数变成生成器,调用函数时得到一个生成器,yield之后的代码不执行,yield就返回生成器地址,next调用生成器,可以像return一样,返回值,但是不会像return返回一次函数就终止了,而且是在执行过程中,可以多次将数据或者状态返回到next调用处(可以返回函数循环体中每次产生的值),如,读取一个大文件,一边读一边返回。此时脚本中的return信息只在抛出异常的时候打印。

def fib(max):
n, a, b = 0, 0, 1
while n < max:
print('before yield')
# print(b)
yield b # 把函数的执行过程冻结在这一步,并且把b的值返回给外面的next()
a, b = b, a + b
n = n + 1
return 'done'
f = fib(3) # 调用函数,将函数变成一个生成器,将地址返回给f
print(f)
print(f.__next__())
print(next(f))
print(f.__next__())
print(next(f))
'''
<generator object fib at 0x0000000001E7E8E0>
before yield
1
before yield
1
before yield
2
Traceback (most recent call last):
File "F:/test.py", line 15, in <module>
print(next(f))
StopIteration: done
'''


迭代器

可以直接作用于for循环的数据类型有以下几种:


  • 一类是集合数据类型,如list、tuple、dict、set、str等;
  • 一类是generator,包括生成器和带yield的generator function。

可以被next()函数调用并不断返回下一个值的对象称为迭代器:Iterator。

注意区别:

  可迭代对象:Iterable(可以直接作用于for循环)

  迭代器:Iterator(可以被next()函数调用并不断返回下一个值)

生成器都是Iterator对象,但list、dict、str虽然是Iterable,却不是Iterator。把list、dict、str等Iterable变成Iterator可以使用iter()函数

from collections import Iterator
a = [1,2,3]
b = iter(a)
print(isinstance(b,Iterator))
print(b.__next__())
print(b.__next__())
print(b.__next__())
print(b.__next__())
'''
True
1
2
3
Traceback (most recent call last):
File "F:/test.py", line 8, in <module>
print(b.__next__())
StopIteration
'''


六、练习题(参考答案已放在Q群文件中)

1.写一个range功能的生成器

声明:如有侵权,请联系删除。

============================= 升职加薪 ==========================