期待的效果就像 PCHuntor 里的那样,如下:

C/C++ 遍历进程内存块_内存保护

上代码

#include "stdafx.h"
#include <Windows.h>
#include <vector>
#include <iostream>
#include <assert.h>
#include <psapi.h>
#include <tlhelp32.h>

using namespace std;

/*枚举指定进程所有内存块
assert(hProcess != nullptr);
参数:
hProcess: 要枚举的进程,需拥有PROCESS_QUERY_INFORMATION权限
memories: 返回枚举到的内存块数组
返回:
成功返回true,失败返回false.
*/
static bool EnumAllMemoryBlocks(HANDLE hProcess, OUT vector<MEMORY_BASIC_INFORMATION>& memories){
// 如果 hProcess 为空则结束运行
assert(hProcess != nullptr);

// 初始化 vector 容量
memories.clear();
memories.reserve(200);

// 获取 PageSize 和地址粒度
SYSTEM_INFO sysInfo = { 0 };
GetSystemInfo(&sysInfo);
/*
typedef struct _SYSTEM_INFO {
union {
DWORD dwOemId; // 兼容性保留
struct {
WORD wProcessorArchitecture; // 操作系统处理器体系结构
WORD wReserved; // 保留
} DUMMYSTRUCTNAME;
} DUMMYUNIONNAME;
DWORD dwPageSize; // 页面大小和页面保护和承诺的粒度
LPVOID lpMinimumApplicationAddress; // 指向应用程序和dll可访问的最低内存地址的指针
LPVOID lpMaximumApplicationAddress; // 指向应用程序和dll可访问的最高内存地址的指针
DWORD_PTR dwActiveProcessorMask; // 处理器掩码
DWORD dwNumberOfProcessors; // 当前组中逻辑处理器的数量
DWORD dwProcessorType; // 处理器类型,兼容性保留
DWORD dwAllocationGranularity; // 虚拟内存的起始地址的粒度
WORD wProcessorLevel; // 处理器级别
WORD wProcessorRevision; // 处理器修订
} SYSTEM_INFO, *LPSYSTEM_INFO;
*/

//遍历内存
const char* p = (const char*)sysInfo.lpMinimumApplicationAddress;
MEMORY_BASIC_INFORMATION memInfo = { 0 };
while (p < sysInfo.lpMaximumApplicationAddress){
// 获取进程虚拟内存块缓冲区字节数
size_t size = VirtualQueryEx(
hProcess, // 进程句柄
p, // 要查询内存块的基地址指针
&memInfo, // 接收内存块信息的 MEMORY_BASIC_INFORMATION 对象
sizeof(MEMORY_BASIC_INFORMATION32) // 缓冲区大小
);
if (size != sizeof(MEMORY_BASIC_INFORMATION32)){break;}

// 将内存块信息追加到 vector 数组尾部
memories.push_back(memInfo);

// 移动指针
p += memInfo.RegionSize;
}

return memories.size() > 0;
}


int _tmain(int argc, _TCHAR* argv[])
{
HANDLE hProcessSnap = CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS,0); // 进程快照句柄
PROCESSENTRY32 process = {sizeof(PROCESSENTRY32)}; // 接收进程信息的对象
vector<MEMORY_BASIC_INFORMATION> vec; // 存放进程内存块的数组
/*
typedef struct _MEMORY_BASIC_INFORMATION {
PVOID BaseAddress; // 内存块基地址指针
PVOID AllocationBase; // VirtualAlloc 函数分配的基地址指针
DWORD AllocationProtect; // 内存块初始内存保护属性
SIZE_T RegionSize; // 内存块大小
DWORD State; // 内存块状态(COMMIT、FREE、RESERVE)
DWORD Protect; // 内存块当前内存保护属性
DWORD Type; // 内存块类型(IMAGE、MAPPED、PRIVATE)
} MEMORY_BASIC_INFORMATION, *PMEMORY_BASIC_INFORMATION;
*/

// 遍历进程
while (Process32Next(hProcessSnap,&process)){
// 找到想要的进程
if(strcmp(process.szExeFile,"rundll32.exe") == 0){
// 获取进程句柄
HANDLE h_rundll32 = OpenProcess(PROCESS_ALL_ACCESS, FALSE, process.th32ProcessID);
if(!h_rundll32){cout << "OpenProcess failed." << endl;}

// 遍历该进程的内存块
if(EnumAllMemoryBlocks(h_rundll32,vec)){
for(int i=0;i<vec.size();i++){
// 输出
cout << "BaseAddress:" << vec[i].BaseAddress << endl;
cout << "AllocationBase:" << vec[i].AllocationBase << endl;
cout << "AllocationProtect:" << vec[i].AllocationProtect << endl;
cout << "RegionSize:" << vec[i].RegionSize << endl;
cout << "State:" << vec[i].State << endl;
cout << "Protect:" << vec[i].Protect << endl;
cout << "Type:" << hex << vec[i].Type << endl;
cout << "----------------------------------" << endl;
}
}else{cout << "EnumAllMemoryBlocks failed." << endl;}
}
}

getchar();
return 0;
}

效果图:

C/C++ 遍历进程内存块_内存保护_02

版权声明:本博客文章与代码均为学习时整理的笔记,文章 [均为原创] 作品,转载请 [添加出处] ,您添加出处是我创作的动力!