给你一个整数数组 nums 和一个整数 target 。
请你统计并返回 nums 中能满足其最小元素与最大元素的 和 小于或等于 target 的 非空 子序列的数目。
由于答案可能很大,请将结果对 10^9 + 7 取余后返回。
示例 1:
输入:nums = [3,5,6,7], target = 9
输出:4
解释:有 4 个子序列满足该条件。
[3] -> 最小元素 + 最大元素 <= target (3 + 3 <= 9)
[3,5] -> (3 + 5 <= 9)
[3,5,6] -> (3 + 6 <= 9)
[3,6] -> (3 + 6 <= 9)
示例 2:
输入:nums = [3,3,6,8], target = 10
输出:6
解释:有 6 个子序列满足该条件。(nums 中可以有重复数字)
[3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6]
示例 3:
输入:nums = [2,3,3,4,6,7], target = 12
输出:61
解释:共有 63 个非空子序列,其中 2 个不满足条件([6,7], [7])
有效序列总数为(63 - 2 = 61)
示例 4:
输入:nums = [5,2,4,1,7,6,8], target = 16
输出:127
解释:所有非空子序列都满足条件 (2^7 - 1) = 127
提示:
1 <= nums.length <= 10^5
1 <= nums[i] <= 10^6
1 <= target <= 10^6
class Solution {
public:
int numSubseq(vector<int>& nums, int target) {
vector<int> pow2(nums.size(), 0);
pow2[0] = 1;
for (int i = 1; i < pow2.size(); ++i) {
pow2[i] = (pow2[i - 1] << 1) % 1000000007;
}
sort(nums.begin(), nums.end());
int res = 0;
for (int i = 0, j = nums.size() - 1; i <= j; ) {
if (nums[i] + nums[j] <= target) {
res = (res + pow2[j - i]) % 1000000007;
i++;
} else
j--;
}
return res;
}
};