Rocksdb事务隔离性指的是多线程并发事务使用时候,事务与事务之间的隔离性,通过加锁机制来实现,本文重点剖析Read Commited隔离级别下,Rocksdb的加锁机制。

  1. Rocksdb事务相关类族

Rocksdb的事务相关的类图如下图所示。主要有两个类族,Transaction和DB,默认采用PessimisticTransaction,而PessimisticTransaction内部的加锁机制通过TransactionLockMgr来实现的。

RocksDB事务的隔离性分析_rock

 

TransactionLockMgr内部维护了LockMap。TransactionLockMgr根据每个记录的Key计算hash值,再对num_stripes取模,在LockMap中的向量Std::vector<LockMapStripe>定位LockMapStripe,这样减少实体锁的竞争激烈程度,相当于锁分解。

 

LockMap的数据成员如下

Size_t num_stripes          LockMapStripe个数,默认16个

Std::vector<LockMapStripe>   LockMapStripe数组

 

LockMapStripe的数据成员如下

std::shared_ptr<TransactionDBMutex>  stripe_mutex :   实体锁

std::shared_ptr<TransactionDBCondVar>  stripe_cv :     实体条件变量

std::unordered_map<std::string, LockInfo>  keys :       具有相同Key hash值的每条记录的加锁信息,std::string为记录的Key值。

 

LockInfo的数据成员如下

bool exclusive :                     排它锁,还是共享锁

uint64_t expiration_time :            锁的过期时间

autovector<TransactionID>  txn_ids :   这把锁阻塞的事务ID列表

 

2. Rocksdb事务流程分析

RocksDB事务的隔离性分析_lock_02

RocksDB事务的隔离性分析_transaction_03

 

上述流程,是应用创建TransactionDB,然后Put一条记录,再Commit的协作流程图,在Put阶段调用TransactionLockMgr的TryLock方法,Commit阶段调用TransactionLockMgr的UnLock方法。

        TransactionLockMgr::TryLock内部的主要逻辑在AcquireLocked函数中,TransactionLockMgr::UnLock内部的主要逻辑在UnlockKey函数中,下面具体分析这两个函数。

AcquireLocked 上锁逻辑如下图所示:

RocksDB事务的隔离性分析_transaction_04

 

3. 总结分析

    1. 应用开启事务后,修改类操作是写入到PessimisticTransaction内部的WriteBatch对象,并不是直接写入实际的存储中,在commit阶段,会调用DBimp的WriteImpl方法把WriteBatch对象写入实际的存储中(memtable、sstable文件)。

    2. Rocksdb支持的锁粒度是记录级别,粒度还是比较细的,但是记录锁并不是实体锁,而是在内存中维护了每条记录的锁状态。当前事务根据内存中每条记录的锁状态来执行加锁逻辑。

 

4.  源码附录:

Status TransactionLockMgr::AcquireLocked(LockMap* lock_map,
                                         LockMapStripe* stripe,
                                         const std::string& key,    //记录的Key值
Env* env,
                                         LockInfo&& txn_lock_info,  //当前事务锁信息
                                         uint64_t* expire_time,     //锁的过期时间
                                         autovector<TransactionID>* txn_ids)
 {
  Status result;
  auto stripe_iter = stripe->keys.find(key);  // 检查这条记录的Key是否已经被加锁了。
  if (stripe_iter != stripe->keys.end()) {       // 这条记录的Key已经被之前事务加过锁
    LockInfo& lock_info = stripe_iter->second;
    if (lock_info.exclusive || txn_lock_info.exclusive) {   //之前事务或者当前事务加的是排他锁,
      if (lock_info.txn_ids.size() == 1 &&
          lock_info.txn_ids[0] == txn_lock_info.txn_ids[0]) {  //之前加锁的事务就是当前事务
        lock_info.exclusive = txn_lock_info.exclusive;
        lock_info.expiration_time = txn_lock_info.expiration_time;
      } else {       //之前加锁的事务不是当前事务
        if (IsLockExpired(txn_lock_info.txn_ids[0], lock_info, env,
                          expire_time)) {   // 之前事务加的锁已经过期,可以清除
          lock_info.txn_ids = txn_lock_info.txn_ids;
          lock_info.exclusive = txn_lock_info.exclusive;
          lock_info.expiration_time = txn_lock_info.expiration_time;
        } else { 
          result = Status::TimedOut(Status::SubCode::kLockTimeout);
          *txn_ids = lock_info.txn_ids;   // 返回之前事务列表
        }
      }
    } else {   //当前事务加的是共享锁
      lock_info.txn_ids.push_back(txn_lock_info.txn_ids[0]);
      lock_info.expiration_time =
          std::max(lock_info.expiration_time, txn_lock_info.expiration_time);
    }
  } else {  // 这条记录的Key没有被之前事务加过锁
    if (max_num_locks_ > 0 &&
        lock_map->lock_cnt.load(std::memory_order_acquire) >= max_num_locks_) {
      result = Status::Busy(Status::SubCode::kLockLimit);
    } else {
      // 当前事务执行加锁操作
      stripe->keys.emplace(key, std::move(txn_lock_info));
      if (max_num_locks_) {
        lock_map->lock_cnt++;
      }
    }
  }
  return result;
}

UnlockKey逻辑相对简单一些,主要是删除加锁的记录,并且唤醒被阻塞的事务。

void TransactionLockMgr::UnLockKey(const PessimisticTransaction* txn,
                                   const std::string& key,
                                   LockMapStripe* stripe, LockMap* lock_map,
                                   Env* env) {
  TransactionID txn_id = txn->GetID();
  auto stripe_iter = stripe->keys.find(key);
  if (stripe_iter != stripe->keys.end()) {
    auto& txns = stripe_iter->second.txn_ids;
    auto txn_it = std::find(txns.begin(), txns.end(), txn_id);
    // Found the key we locked.  unlock it.
    if (txn_it != txns.end()) {
      if (txns.size() == 1) {
        stripe->keys.erase(stripe_iter);
      } else {
        auto last_it = txns.end() - 1;
        if (txn_it != last_it) {
          *txn_it = *last_it;
        }
        txns.pop_back();
      }
       if (max_num_locks_ > 0) {
        // Maintain lock count if there is a limit on the number of locks.
        assert(lock_map->lock_cnt.load(std::memory_order_relaxed) > 0);
        lock_map->lock_cnt--;
      }
    }
  } else {
    // This key is either not locked or locked by someone else.  This should
    // only happen if the unlocking transaction has expired.
    assert(txn->GetExpirationTime() > 0 &&
           txn->GetExpirationTime() < env->NowMicros());
  }
}