中台是一种体系/生态/方法论,有标准和机制,解决顶层领域下各业务子域的高效协同和资源复用问题。中台建设强调企业级,IT部门与业务部门协同建设,各部门、各业务域是中台能力的使用方,同时也是中台能力的重要提供方。目前网上比较主流的中台定义和分类有如下三种:
业务中台: 指微服务业务平台,像常见交易中台、订单中心、营销中心。
数据中台: 通过数据技术,对海量数据进行采集、计算、存储、加工,同时统一标准和口径。
技术中台: 如微服务框架、Devops平台、容器之类。
(阿里业务中台架构)
(电商业务通用中台架构)
(滴滴业务中台架构)
(有赞财务业务中台架构)
业务中台是为业务服务的,各业务中心要了解和掌握你所支撑的业务具体情况是什么样子,对业务知识和流程要有深刻的认识。企业建设业务中台不应该完全从IT技术层面考虑,需要从技术、业务、组织和运营多个维度协同推进,而不单单是IT系统的一个维度。CIO们不能听信于厂商吹得天花乱坠,没有实际调研过的与业务碰撞过的方案一定不是最适合的方案。业务中台化不会有一套拿来改改就能用的方案,必须具体情况具体分析,中台化的过程不出意外一定是痛苦和艰难的。
(网易云数据中台架构)
(菜鸟数据中台架构)
数据中台建设的基础还是数据仓库和数据中心,并且在数仓模型的设计上也是一脉传承。数据中台一般包括了数据模型和数据资产管理,数据服务开放,上层的数据类应用和标签管理等。围绕“规划、治理、整合、共享”四步,将企业海量、多维的数据资产盘点、整合、分析、确保整个公司数据一致性和可复用性,为前台提供数据资产、数据定制创新、数据监测与数据分析等服务,最终实现数据资产的价值最大化。在具体建设策略方面,企业应基于自身的业务战略,选择明确数据资产对象,由业务或应用(需求)驱动,若没有实际的应用场景或没有足够的客户群体,不建议建数据中台。
人工智能从研究领域进入到实用领域的步伐越来越快,越来越多的场景可以并需要实用人工智能技术提高效益。在AI的实用化阶段,需要解决AI技术如何与业务场景更好结合,如何减少重复投资、降低成本使投入产出比更高的问题。AI中台不是一个孤立的平台,而是整体信息化建设的一部分,必要要能与基础平台、业务系统很好的融合。只有做好与原有业务系统的对接,才能使AI能力更好的助力于业务智能化。
(云端技术栈)
(DevOps 研发交付运维一体化)
( 研发组件化)
( 研发标准化)
(技术中台整体架构)
中台最重要的作用就是减少资源的复用,通过一个个微服务快速完成前台(即业务部门)的需求,从而提高企业对⽤户的响应⼒,帮助前台完成规模化创新。当业务线变多且越来越复杂,前台与后台之间的“技术债”会随之变多,重复造轮子与沟通成本太高的现象会增多,通过技术中台可以一定程度上来解决这个问题。但如果「技术中台」做得太多,资源投入就会很大,无法形成正向的利益传导;如果「技术中台」做得太少,又无法深入理解业务,导致适配方案落地性变差,渐渐失去价值。
建议
建设中台是一项耗时耗力耗钱的大工程。中台架构的实施落地推荐从易到难逐步实施,从最简单的资源中台开始,到技术中台、数据中台->业务中台->组织中台,最终完成企业架构的中台化。很多传统企业内部往往存在多种管理系统,部门间数据孤岛的问题很严重,缺乏治理,有时甚至连最基本的用户账号统一都没有打通。这也就意味着,一个项目往往要同所有部门梳理业务、统一接入数据,打通难度可想而知,投入产出问题还需企业审慎考虑。
互联互通社区