作者】zhangjunhd
 
版权声明:原创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 、作者信息和本声明。否则将追究法律责任。[url]http://zhangjunhd.blog.51cto.com/113473/102754[/url]
1.插入排序-O(N2)
插入排序由N-1趟排序组成。对于P=1趟和P=N-1趟,插入排序保证从位置0到位置P上的元素为已排序状态。
typedef int ElementType;

void Swap( ElementType *Lhs, ElementType *Rhs )
{
        ElementType Tmp = *Lhs;
        *Lhs = *Rhs;
        *Rhs = Tmp;
}

/* 插入排序 */
void InsertionSort( ElementType A[ ], int N )
{
        int j, P;
        ElementType Tmp;

        for( P = 1; P < N; P++ )
        {
                Tmp = A[ P ];
                for( j = P; j > 0 && A[ j - 1 ] > Tmp; j-- )
                        A[ j ] = A[ j - 1 ];
                A[ j ] = Tmp;
        }
}

2.希尔排序-O(N2)
希尔排序使用一个增量序列h1,h2,...,ht,其中h1=1。每次选择ht,ht-1,..,h1进行排序,对于每个增量hk排序后,有A[i]<=A[i+hk],即所有相隔hk的元素都被排序。希尔排序的实质是执行多趟间隔为hk的元素间的插入排序。
/* 希尔排序 */
void Shellsort( ElementType A[ ], int N )
{
        int i, j, Increment;
        ElementType Tmp;

        for( Increment = N / 2; Increment > 0; Increment /= 2 )
                for( i = Increment; i < N; i++ )
                {
                        Tmp = A[ i ];
                        for( j = i; j >= Increment; j -= Increment )
                                if( Tmp < A[ j - Increment ] )
                                        A[ j ] = A[ j - Increment ];
                                else
                                        break;
                        A[ j ] = Tmp;
                }
}

3.堆排序-O(NlogN)

堆排序由两个过程组成,一是建堆-O(N),二是N-1次删除堆顶元素-O(NlogN)。

建堆(大顶堆)过程为,由完全二叉树的最后一个非叶节点(秩为(N-2)/2)开始执行下滤操作,直到堆顶元素为止。删除堆顶元素过程为,将堆顶元素与数组末尾元素互换,新的二叉堆(除去数组后端被置换出的堆顶元素),再次执行堆顶元素的下滤操作。如此循环,直到堆中只有一个元素。此时,排序完成。此排序无需额外空间,为就地排序。
#define LeftChild( i )    ( 2 * ( i ) + 1 )
/* 下滤过程,构建大顶堆 */
void PercDown( ElementType A[ ], int i, int N )
{
        int Child;
        ElementType Tmp;

        for( Tmp = A[ i ]; LeftChild( i ) < N; i = Child )
        {
                Child = LeftChild( i );
                if( Child != N - 1 && A[ Child + 1 ] > A[ Child ] )
                        Child++;
                if( Tmp < A[ Child ] )
                        A[ i ] = A[ Child ];
                else
                        break;
        }
        A[ i ] =Tmp;
}

/* 就地堆排序 */
void Heapsort( ElementType A[ ], int N )
{
        int i;

        for( i = (N - 2) / 2; i >= 0; i-- )    /* BuildHeap */
                PercDown( A, i, N );
        for( i = N - 1; i > 0; i-- )
        {
                Swap( &A[ 0 ], &A[ i ] );    /* DeleteMax */
                PercDown( A, 0, i );
        }
}

4.归并排序-O(NlogN)
归并排序实质是将序列分成左右两个子序列,分别排序,然后再合并成一个有序序列。
/* Lpos = start of left half, Rpos = start of right half */
void Merge( ElementType A[ ], ElementType TmpArray[ ], int Lpos, int Rpos, int RightEnd )
{
        int i, LeftEnd, NumElements, TmpPos;

        LeftEnd = Rpos - 1;
        TmpPos = Lpos;
        NumElements = RightEnd - Lpos + 1;

        /* main loop */
        while( Lpos <= LeftEnd && Rpos <= RightEnd )
                if( A[ Lpos ] <= A[ Rpos ] )
                        TmpArray[ TmpPos++ ] = A[ Lpos++ ];
                else
                        TmpArray[ TmpPos++ ] = A[ Rpos++ ];

        while( Lpos <= LeftEnd )    /* Copy rest of first half */
                TmpArray[ TmpPos++ ] = A[ Lpos++ ];
        while( Rpos <= RightEnd ) /* Copy rest of second half */
                TmpArray[ TmpPos++ ] = A[ Rpos++ ];

        /* Copy TmpArray back */
        for( i = 0; i < NumElements; i++, RightEnd-- )
                A[ RightEnd ] = TmpArray[ RightEnd ];
}

void MSort( ElementType A[ ], ElementType TmpArray[ ], int Left, int Right )
{
        int Center;

        if( Left < Right )
        {
                Center = ( Left + Right ) / 2;
                MSort( A, TmpArray, Left, Center );
                MSort( A, TmpArray, Center + 1, Right );
                Merge( A, TmpArray, Left, Center + 1, Right );
        }
}

void Mergesort( ElementType A[ ], int N )
{
        ElementType *TmpArray;

        TmpArray = malloc( N * sizeof( ElementType ) );
        if( TmpArray != NULL )
        {
                MSort( A, TmpArray, 0, N - 1 );
                free( TmpArray );
        }
        else
                FatalError( "No space for tmp array!!!" );
}

void Merge()函数合并两个有序子序列;
void MSort()归并排序递归实现,递归基是Left>=Right,此时序列中只有一个元素;
void Mergesort()分配空间,调用归并函数,释放空间。

5.快速排序-O(NlogN)
设数组S,快速排序为quicksoet(S),算法为,
1.如果S中元素个数是0或1,则返回;
2.取S中任一元素v,称之为枢纽元(pivot);
3.将S-{v}(S中其余元素)分成两个不相交的集合;分别为大于等于v的元素集S1和小于等于v的元素集S2;
4.递归实现quicksort(S1)和quicksort(S2)。
/* Return median of Left, Center, and Right */
/* Order these and hide the pivot */
ElementType Median3( ElementType A[ ], int Left, int Right )
{
        int Center = ( Left + Right ) / 2;

        if( A[ Left ] > A[ Center ] )
                Swap( &A[ Left ], &A[ Center ] );
        if( A[ Left ] > A[ Right ] )
                Swap( &A[ Left ], &A[ Right ] );
        if( A[ Center ] > A[ Right ] )
                Swap( &A[ Center ], &A[ Right ] );

        /* Invariant: A[ Left ] <= A[ Center ] <= A[ Right ] */

        Swap( &A[ Center ], &A[ Right - 1 ] );    /* Hide pivot */
        return A[ Right - 1 ];                                /* Return pivot */
}

#define Cutoff ( 3 )

void Qsort( ElementType A[ ], int Left, int Right )
{
        int i, j;
        ElementType Pivot;

        if( Left + Cutoff <= Right )
        {
                Pivot = Median3( A, Left, Right );
                i = Left; j = Right - 1;
                for( ; ; )
                {
                        while( A[ ++i ] < Pivot ){ }
                        while( A[ --j ] > Pivot ){ }
                        if( i < j )
                                Swap( &A[ i ], &A[ j ] );
                        else
                                break;
                }
                Swap( &A[ i ], &A[ Right - 1 ] );    /* Restore pivot */

                Qsort( A, Left, i - 1 );
                Qsort( A, i + 1, Right );
        }
        else    /* Do an insertion sort on the subarray */
                InsertionSort( A + Left, Right - Left + 1 );
}

void Quicksort( ElementType A[ ], int N )
{
        Qsort( A, 0, N - 1 );
}

使用Median3()函数选取枢纽元,这是三数中值分割法,对于数组S的N-1个元素,取S[0],S[N-1],S[(N-1)/2]三个数中的中位数作为枢纽元。它还完成了第一次比较,即将三者中最小值放在数组最左端,最大值放在数组最右端,中间值即枢纽元放在数组靠右第二的位置并返回之。

对于只有小于等于Cufoff个的序列,实行插入排序,因为对于很小的数组,快速排序不如插入排序。

每次调整后,都能确定枢纽元的位置,该位置在序列中是稳定的,即为排序后最终位置,可以利用这一点构造寻找数组中第k小数的算法,即快速选择算法,该算法的平均花费为O(N)。算法具体为,每次确定枢纽元的位置i后,与k比较,如果k=i+1,则寻找成功,如果k<=i,则继续在前半部分寻找,否则在后半部分寻找。
/* Places the kth smallest element in the kth position */
/* Because arrays start at 0, this will be index k-1 */
void Qselect( ElementType A[ ], int k, int Left, int Right )
{
        int i, j;
        ElementType Pivot;

        if( Left + Cutoff <= Right )
        {
                Pivot = Median3( A, Left, Right );
                i = Left; j = Right - 1;
                for( ; ; )
                {
                        while( A[ ++i ] < Pivot ){ }
                        while( A[ --j ] > Pivot ){ }
                        if( i < j )
                                Swap( &A[ i ], &A[ j ] );
                        else
                                break;
                }
                Swap( &A[ i ], &A[ Right - 1 ] );    /* Restore pivot */

                if( k <= i )
                        Qselect( A, k, Left, i - 1 );
                else if( k > i + 1 )
                        Qselect( A, k, i + 1, Right );
        }
        else    /* Do an insertion sort on the subarray */
                InsertionSort( A + Left, Right - Left + 1 );
}
本文出自 “子 孑” 博客,请务必保留此出处[url]http://zhangjunhd.blog.51cto.com/113473/102754[/url]