随着科技的发展和网络的普及,人们可获得的数据量越来越多,这些数据多数是以文本形式存在的。而这些文本数据大多是比较繁杂的,这就导致了数据量大但信息却比较匮乏的状况。如何从这些繁杂的文本数据中获得有用的信息越来越受到人们的关注。“在文本文档中发现有意义或有用的模式的过程"的文本挖掘技术为解决这一问题提供了一个有效的途径。

数据挖掘 大语言模型 数据挖掘自然语言处理_大数据

  知识发现与数据挖掘是人工智能、机器学习和数据库相结合的产物。随着科学数据的大量积累和各种数据库的广泛使用,人们又逐步认识到海量数据的利用十分困难、效率低下,而且很难从中获得有价值的指导性意见。在这种情况下,数据挖掘技术应运而生。

  数据挖掘包括许多步骤:从大规模数据库中(或从其他来源)取得数据;选择合适的特征属性;挑选合适的样本策略;剔除数据中不正常的数据并补足不够的部分;用恰当的降维、变换使数据挖掘过程与数据模型相适合或相匹配;辨别所得到的是否是知识则需将得到的结果信息化或可视化,然后与现有的知识相结合比较。这些步骤是从数据到知识的必由之路。每一步骤都可能是成功的关键或失败的开始。在一般的定义中数据挖掘是知识获取的一部分。

  文本挖掘作为数据挖掘的一个新主题

  灵玖软件NLPIR大数据语义智能分析平台针对中文数据挖掘的综合需求,融合了网络精准采集、自然语言理解、文本挖掘和语义搜索的研究成果,先后历时十八年,服务了全球四十万家机构用户,是大时代语义智能分析的一大利器。

  NLPIR大数据语义智能分析平台平台针对互联网内容处理的全技术链条的共享开发平台。15年专业研究与工程积累,提供应用软件及各平台下的二次开发包。提供了用于技术二次开发的基础工具集。开发平台由多个中间件组成,各个中间件API可以无缝地融合到客户的各类复杂应用系统之中。

  NLPIR能够全方位多角度满足应用者对大数据文本的处理需求,包括大数据完整的技术链条:网络采集、正文提取、中英文分词、词性标注、实体抽取、词频统计、关键词提取、语义信息抽取、文本分类、情感分析、语义深度扩展、繁简编码转换、自动注音、文本聚类等。

  中文数据挖掘技术应时代的要求应运而生,在很大程度上满足了人们对自然语言处理的需要,解决了人和计算机交流中的一些障碍;但中文数据挖掘技术也存在很多困难,NLPIR大数据语义智能技术将对中文数据挖掘技术进行深入研究,必将提供出高质量、多功能的中文数据挖掘算法并促进自然语言理解系统的广泛应用。