从定义出发,Ax=cx:A为矩阵,c为特征值,x为特征向量。 

矩阵A乘以x表示,对向量x进行一次转换(旋转或拉伸)(是一种线性转换),而该转换的效果为常数c乘以向量x(即只进行拉伸)。 

我们通常求特征值和特征向量即为求出该矩阵能使哪些向量(当然是特征向量)只发生拉伸,使其发生拉伸的程度如何(特征值大小)。这样做的意义在于,看清一个矩阵在那些方面能产生最大的效果(power),并根据所产生的每个特征向量(一般研究特征值最大的那几个)进行分类讨论与研究。


首先我们先把特征值和特征向量的定义复习一下:

定义: An阶矩阵,如果数λ和n维非零向量x使关系式

特征值和特征向量_特征值;特征向……(1)

成立,那么,这样的数λ称为矩阵A的特征值,非零向量x称为A的对应于特征值λ的特征向量,(1)式还可以写为:

               特征值和特征向量_特征值;特征向_02……(2)

如果想求出矩阵对应的特征值和特征向量就是求式(2)的解了。

那么,问题来了,这个式子要怎么理解呢?

首先得先弄清矩阵的概念:一个矩阵代表的是一个线性变换规则,而一个矩阵的乘法运行代表的是一个变换;

比如有一个矩阵A

特征值和特征向量_特征值;特征向_03

一个列向量为X为:

特征值和特征向量_特征值;特征向_04

一个矩阵的乘法为:

特征值和特征向量_特征值;特征向_05 

向量X通过矩阵A这个变化规则就可以变换为向量Y

                      特征值和特征向量_特征值;特征向_06

在几何上的变换就类似于这样:

               特征值和特征向量_特征值;特征向_07

       知道了这个就可以从几何上理解特征值和特征向量是什么意思了,由  

               特征值和特征向量_特征值;特征向_08

可知:

特征值和特征向量_特征值;特征向_09

所以,确定了特征值之后,向量x的变换为:                         

特征值和特征向量_特征值;特征向_10

引用《线性代数的几何意义》的描述:“矩阵乘法对应了一个变换,是把任意一个向量变成另一个方向或长度都大多不同的新向量。在这个变换的过程中,原向量主要发生旋转、伸缩的变化。如果矩阵对某一个向量或某些向量只发生伸缩变换,不对这些向量产生旋转的效果,那么这些向量就称为这个矩阵的特征向量,伸缩的比例就是特征值。”

那么这样定义的特征值和特征向量有什么实际用途呢?在这里我举个数据挖掘算法中重要的一个算法:PCA(主成分分析)来给大家直观的感受一下。

首先,理解一下信息量这个概念

看几张图:

                     特征值和特征向量_特征值;特征向_11

如果我们单独看某一个维度的话,比如看x1这个维度

                      特征值和特征向量_特征值;特征向_12

可以看到将点投影到x1这个维度上看的话,图1的数据离散性最高,图3较低,图2数据离散性是最低的。数据离散性越大,代表数据在所投影的维度上具有越高的区分度,这个区分度就是信息量。如果我们用方差来形容数据的离散性的话,就是数据方差越大,表示数据的区分度越高,也就是蕴含的信息量是越大的。

         基于这个知识,如果我们想对数据进行降维的话,比如图1的两个维度的数据降成一维,我们可以选择保留X1这个维度的数据,因为在这个维度上蕴含的信息量更多。

同理,图2就可以保留x2这个维度的数据。但是,问题来了,图3应该保留哪个维度的数据呢?答案是保留哪个维度都不好,都会丢失较大的信息量。但是,如果我们把图3的坐标轴旋转一下

            特征值和特征向量_特征值;特征向_13
   
比较容易看出,图3在新的坐标轴下就能进行降维了。所以选取正确的坐标轴,然后根据各个维度上的数据方差大小,决定保留哪些维度的数据,这样的做法就是主成分分析的核心思想。

选取正确的坐标轴的过程中,我们需要一个矩阵变换,就类似于这样:   

                                           特征值和特征向量_特征值;特征向_14

也就是:

特征值和特征向量_特征值;特征向_15

其实,经过数学上的推导的,我们就可以知道,特征值对应的特征向量就是理想中想取得正确的坐标轴,而特征值就等于数据在旋转之后的坐标上对应维度上的方差。

也就是说,直接求出矩阵A的特征向量得出对应的特征向量。我们就能找到旋转后正确的坐标轴。这个就是特征值和特征向量的一个实际应用:“得出使数据在各个维度区分度达到最大的坐标轴。”

所以,在数据挖掘中,就会直接用特征值来描述对应特征向量方向上包含的信息量,而某一特征值除以所有特征值的和的值就为:该特征向量的方差贡献率(方差贡献率代表了该维度下蕴含的信息量的比例)。

通常经过特征向量变换下的数据被称为变量的主成分,当前m个主成分累计的方差贡献率达到一个较高的百分数(如85%以上)的话,就保留着这m个主成分的数据。实现了对数据进行降维的目的。整个主成分分析的算法原理也就是这个。